

InSysPo Policy Evaluations, Tech-upgrade and Catching up in LA: org capabilts; institutional support

São Paulo 5 July 2019

SERGIO SALLES-FILHO UNICAMP

Summary

- 1. Hypotheses
- 2. Structural macrodata about Brazilian environment for tech upgrade and innovation
- 3. 3 cases of STI Policy evaluation
- 4. Lessons
- 5. Conclusions

Hypothesis 1

Considering

- Macro level STI policies for development (looking at catching up) requires :
 - 1. Strong orchestration amongst levels and agents (via a coordinator agent or via market)
 - 2. Institutional support
 - 3. Agreement amongst agents
 - 4. Stability over time

Then:

- In the absence of these conditions, macro policy effectiveness will hardly be achieved
- The more complex the orchestration, the less likely is the effectiveness of policies
- And this is not only a matter of design
- The problem is moreover structural

Hypothesis 2

If Hypothesis 1 is correct

Then:

- The more feasible the coordination is, the more effective policies tend to be
- And this is a matter of design

A corollary would be

- If those requirements are not in the page, do not go for complex top down policies
- Go instead for more managable policies, even if they are apparently less impacting
- Coordination is the top thing missing

What evaluations look for? E E E

What evaluatoins look for? E E E?

What is missing?

- Simple things may help
 - Start with sound (and well explained) theory of change
 - Deploy necessary factors interfering in policy implementation success
 - Adopt simple tools like logical frameworks to monitor
 - Review sistematically
 - But...

Be careful...

- Once you establish an incentive, people will get accostumed
- Environment will change and accostumed people use to be resilient

Some macrodata about the BR environment for innovation

Persistent macro indicators (for decades)

Productivity is stagnated or even declining

Very low degree of openness of the economy

Very low rates of investment

And a wide array of STI policy instruments...

Productivity 5 countries 1980-1990

Fonte: Groningen Growth and Development Center

Productivity 5 countries 1990-2010

Fonte: Groningen Growth and Development Center

Average Productivity Brazil by sector

Figura 12: Variação Anual Média da Produtividade por Setor – 2000-2013

FIGURE 10

Labor productivity annual growth, Brazil and China (2009-2014)

Source: University of Groningen.

Number of persons engaged and output-side real GDP at chained PPPs (2011US\$).

Labor productivity by macro sector

Figura 9: Produtividade do trabalho por macrossetor (em milhares de reais)

Fonte: Sistema de Contas Nacionais/IBGE. Elaboração própria.

Investment rate

Degree of Openness (I+E/GDP)

R&D expenditures (excluding graduation studies investments) and R&D expenditures (excluding graduation studies investments) without CsF. Brazil (2000-2015)

Main ST&I policies and instruments in Brazil (2015)

Innovation and S&T policies and instruments (main sources of funding for S&T in Brazil)		Current Reais	US\$ ppp
Tax breaks ¹	Informatics Law (Laws nº 8.248/1991, nº 10.176/2001 and nº 11.077/04)	5,022,390,000	2,716,273,661
	Business RD&I expenditures (Law nº 11,196/2005)	1,835,212,176	992,543,091
	Business S&T expenditures (Law n^2 4.506/64 and Decree no 756/69)	1,323,754,218	715,929,810
	RD&I in automotive sector (Law nº 12.715/12, Decree nº 7.819/12 and Law nº 12,407/11)	2,850,284,180	1,541,527,409
	Other tax breaks ²	877,032,545	474,328,039
	Total (tax breaks)	11,908,673,120	6,440,602,011
Subsidized credit for innovation	Disbursements by FINEP	2,603,000,000	1,407,787,994
	Disbursements by BNDES ³	4,501,000,000	2,434,288,805
	Total	7,104,000,000	3,842,076,798
S&T public investment (excluding graduate studies expenditures) ⁴	Federal investments	22,809,042,668	12,335,880,296
	State investments	8,974,188,001	4,853,535,966
	Total	32,783,230,671	17,189,416,262
Counterpart in R&D by companies in regulated sectors (private compulsory investment)	Electricity Regulatory Agency (ANEEL) R&D program ⁵	392,460,000	212,255,273
	The National Petroleum Agency (ANP) R&D program	1,030,956,397	557,575,120
	Total	1,423,416,397	769,830,393

Total: US\$ 28 Billion in 2015

FIGURE 9

Patent grants at USPTO, selected countries (2002-2015)

Fonte: USPTO.

Which policies can be implemented for catching up under:

- Persistent low rates of investment?
- Persistent (very) low degree of openness and high level of barriers?
- Most dynamic sectors turned to internal market?
- Persistent (and decreasing) labor productivity?

LESSONS FROM EVALUATIONS WE HAVE DONE

FAPESP's Programs

- PITE University -Company Relationship
- PIPE (SBIR like)
- Scholarships Under grad; MSc; PhD
- International cooperation
- Young carreer
- Public Policy
- Multiuser equipment

 Several types of collaborations and partnerships

Other programs from other agencies

- Fiscal Incentives for ICT sector
- EMBRAPII Brazilian Agency for industrial innovation
 - Cooperation RO-I for innovation
- FINEP Brazilian Innovation Agency
 - Subvention and credit for innovation
 - Academic R&D
- National Service for Industrial Training
 - cooperation RO-I for innovation
- Serrapilheira Institute
 - Grants for young career / raising stars
- Foundation for Agricultural Innovation (Chile)
 - Grants for producers and researchers
- INCAGRO (Peru)
 - Grants for producers and researchers

Let's see 2 cases

- a) top down sectoral policy
 Fiscal incentives for R&D in ICT sector
- b) bottom up transversal policy Fostering industry – RO R&D collaboration

ICT fiscal incentives

- ICT Law (IL) → created in the early 1990s to encourage R&D activities in the ICT sector in the country.
 - More than 25 years; now about to change
 - Relevance:
 - BRL\$ 12 billion (circa 4 US billion) in R&D activities from 2006 to 2015 (R\$1,5 bi/year)
 - Turnover of recipient companies: more than BRL\$ 300 billion (same period)
 - Tax relief: R\$ 5.6 bi/year

Added Values ICT selected countries

Added Values ICT selected countries

^{*}Excluindo-se EUA e China

Added Values ICT selected countries

Added value ICT/ total Added value

Employment ICT sector selected countries

Empregados no setor de TICS - Comparação Internacional

Employment ICT sector selected countries

Empregados no setor de TICS - Comparação Internacional

Exclude US and China

Employment ICT Brasil

Percentual de empregados no Setor de TICs em relação aos empregos no Brasil

PERD in the ICT sector

Pessoal empregado em P&D - Comparação Internacional

PERD in the ICT sector

Pessoal empregado em P&D - Comparação Internacional

^{*}exclude US and China

Added value and employment ICT sector (2005-2014)

Brasil:

- Growth of employment 1,64 x
- Growth of added value1,4 x

EUA:

- Growth of employment circa zero
- Growth of added value 1,4 x

China:

- employment 2x
- Added value 3x

Productivity ICT sector selected countries

Produtividade no setor de TICs - Comparação Internacional

Productivity ICT sector in Brazil

BERD in ICT in selected economies

Gasto Empresarial em P&D no setor de TICs - Comparação Internacional

BERD in ICT in selected countries

Gasto Empresarial em P&D setor de TICS - Comparação Internacional

 Deficit: US\$ 25 billions aprox: 15% of total Brazilian imports

conclusions

- Increasing fiscal incentives
- Increasing investment in R&D
- Increasing general employment, decreasing R&D employment
- Stagnation of added value
- Decreasing productivity
- Increasing commercial deficit
- How to explain it?

conclusions

- Typical case of voluntarism of policies
- Increasing R&D cannot be an end in itself
- You may have tech upgrade without any catching up
- Evaluation help us in finding reasons of why following manuals and traditional indicators may stand for nothing

Case 2 PIPE – Fapesp's Small Business Innovation

PIPE Themes of evaluation (2007-2017) grantees x rejected

- 1. Companies and project profiles
- 2. Entrepreneur/Researcher profile
- 3. R&D Investment
- 4. Financial and Economic data (internal and external market + venture)
- 5. Employment and job creation (total and R&D)
- 6. Intelectual property and tec. transfer
- 7. Governance and management
- 8. Parnership and collaboration

Traditional Hypotheses

H1 input: Companies increase their capacity on technological innovation

H2 output: PIPE promotes socio-economic impacts measured by income, exports and employment and job creation

H3 behaviour: PIPE promotes culture of technological innovation in small business

Non Traditional Hypotheses

H4: Organizational and managerial variables influence outputs and take advantages from ecosystems

H5: social capital is a critical capability for SBIR like awardees

PIPE case Quasi-experimental approach

Group of Awardees (2003-2017)

- 400 population of concluded projects
- 185 respondents (46%)

Group of Rejected (2003-2017)

- Circa 2000 projects
- 492 respondents (25%)

SOME FINDINGS FOR PARTENERSHIP, GOVERNANCE AND MANAGEMENT

Input

- 1	\sim		h	~ :	+.		\sim
	11		11	_		1	
		ч	v	a.	LΙ	v	

Spin-off

Coordinator's background

Explicit R&D&I strategy

Governance and Compliance

R&D Project Management

Parnership with ROs

Parnership others

Successful technological results

Innovation

R&D investment

Employment higher education

Employment in R&D

Net Income (variation)

Parnership with ROs

Parnership others

Bivariate analysis: inputs x outputs

	succesful technologic al results	Innovation	R&D investment (variation)	Employme nt higher education	Employme nt in R&D (variation	Net Income (variation)	Parnership with ROs	Parnership others
Incubation	P/NS	NO	P/NS	P/S	NO	P/NS	P/NS	P/NS
Spin-off	N/NS	N/NS	P/NS	P/NS	NO	N/NS	P/NS	N/NS
Coordinator's background	P/NS	NO	N/S	N/S	N/S	NO	NO	NO
Explicit R&D&I strategy	P/NS	P/NS	NO	NO	NO	NO	P/S	P/S
Governance and Compliance	P/S	P/NS	NO	P/S	P/S	NO	P/NS	P/S
R&D Project Management	P/S	P/S	NO	P/S	P/S	N/NS	P/S	P/S
formalized	175	170	INO	175	175	IN/INO	173	173
Parnership with ROs	P/S	NO	NO	NO	NO	NO		
Parnership others	P/NS	P/S	NO	NO	NO	NO		

Legend:

P/NS: POSITIVE/NON-SIGNIFICANT N/NS: NON POSITIVE/NON-SGNIFICANT

P/S: POSITIVE/SIGNIFICANT NO: NO CORRELATION

Bivariate analysis: inputs x outputs

Most influent variables (predictor)

- R&D Project Management capabilities
- Compliance formalized

Mutual causality

- Partnership and governance and
- professional R&D Management

Some results

Non significant R&D expenditures between awardees and rejected

Companies with management and governance skills increased expenditures more than non-skilled

Job creation: positive effect of around 60% in total job creation.

Job creation in R&D positive and significant before (2x) and after (3x)

Companies with management skills increase job creation in R&D by 3 x

ICT sector no difference for job creation and

Evolution of Job creation Before / after

Conclusions

- Bottom level policy
- Easier to manage and tuned
- Effectiveness well defined
- But not possible to talk over catching up...

CHALLENGES

Back to theory of change (but well detailed)

MIT - Manuals of Indicators Trap

- Evaluating Catching up :
 - Start including surrounding indicators since the begining

Beyond manuals

Behavioral indicators to be added

Go beyond crowding in/out

Rigour is not incompatible with Vigour

STI Policy
Evaluation
and
Catching up
in Latin
America

"I think you should be more explicit here in step two."

Source: https://www.theoryofchange.org/what-is-theory-of-change/

sallesfi@unicamp.br
sallesfi@fapesp.br

THANK YOU