CANADIAN JOURNAL OF EXPLORATION GEOPHYSICS
VOL. 27, NO.1 (DECEMBER 1991), P. 1-11

APPLICATION OF FUZZY SET THEORY TO INTEGRATED

MINERAL EXPLORATION'

2 2 3
Ping An™, Wooi M. Moon™ anp AnDy Rencz

ABSTRACT

Geological interpretation of multiple geophysical and other auxiliary
data sets has always been a complex and ambiguous experience, even
with good quality data sets. There are several quantitative methods of
integrating geological and geophysical data sets for specific exploration
targets: classical (Bayesian) probability approach, Dempster-Shafer
approach, fuzzy logic approach and Al/Expert system methods. In this
study, apart from geophysical interpretation and inversion theories, the
problem is focused on the geophysical information representation and
quantitative integration of spatial data sets for chosen exploraton
propositions. Fuzzy set theory using the algebraic-sum and y operators
is investigated and tested with nine sets of geological and geophysical
data from the Farley Lake area, Canada. The possibility distribution
maps derived using both the algebraic and vy operators have successfully
outlined favourable areas for “base metal deposits” and “iron formation
deposits”. Further evaluation using the jackknife estimation approach
indicates that the fuzzy logic approach provides an effective tool for
integrating geological, geochemical and geophysical data sets for
resources exploration. The results overlain with bands | and 2 of
MEIS-II (Multi-detector Electro-optical Image Scanner-II) image
demonstrate that the digitally outlined favourable areas can further be
utilized with recently available high-resolution images of the
exploration area.

InTRODUCTION

In resource exploration, and in geophysical research in gen-
eral, there has always been urgent need for further development
of new techniques for geophysical inversion and for integrated
geological interpretation of the observed field data. Recently,
there has appeared a new problem in processing and integration
of large volumes of multiple geophysical data sets. This prob-
lem has been intensified with rapidly increasing size of geo-
physical data sets, particularly from airborne and space-borne

sensors. One of the most popular new approaches taken to
resolve this problem is the commonly available digital GIS’s
(Geographical Information System). The GIS works well with
simple geographic and map information. Geophysical informa-
tion from various sensors, however, requires more precise
representation for subsequent spatial reasoning and interpreta-
tion (An, 1989; Moon, 1989; Moon, 1990). In this study, the
fuzzy logic approach of representing geological and geophysi-
cal information is reviewed and investigated.

The classical set theory founded by Georg Cantor (1845-
1918) is defined on a collection of objects (elements) which
have certain common properties (Kuratowski and Moslowski,
1976). An object can be either a member of the set with a
membership 1 or not a member with membership 0. There is no
third option in the classical set theory. In the cases where the
information to be processed is possibilistic and transient in
nature, one needs a mathematical tool which can adequately
represent the information with a degree of possibility and/or
uncertainty. The traditional mathematical approach has com-
monly employed the statistical and probabilistic approach with
specific information theoretical framework (Chung and Moon,
1990; Moon et al., 1990). The fuzzy membership function is
not, by definition, a probability and there is some advantage to
using the fuzzy logic approach in geophysical problems. There
have recently been several reported applications of fuzzy logic
theory in remote sensing and other geographical information
processing. Among them are Wang (1989) who applied fuzzy
set theory in an expert system for remote sensing image analysis
and Blonda et al. (1989) who used a fuzzy logic technique in
classifying multitemporal remotely sensed imagery.

In geophysical exploration, certain measurements and/or
observations, such as measurements of Earth’s gravitational
anomalies or observation of certain rock types, form a “data set”
or “data sets”. This information usually has been treated, i.e.,

'Presented at the C.S.E.G. National Convention, Calgary, Alberta, May 16, 1991. Manuscript received by the Editor February 5, 1991; revised manuscript received

April 10, 1991.

chpartmcm of Geophysics, The University of Manitoba, Winnipeg, Manitoba R3T 2N2

3MRD. Geological Survey of Canada, Ottawa, Ontario K1A 0E8

This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) operating grant A-7400 to W.M. Moon. Drs. Mark
Fedikow and Ifti Hosein at the Dept. of Energy and Mines, Province of Manitoba, and geologists at Manitoba Mineral Resources Ltd. kindly provided the test data for

this study.

CSEG Journal

December 1991



P. AN, W.M. MOON and A. RENCZ

processed and interpreted, in the framework of classical sets.
Even though the information very seldom is discrete, it is
discretized for convenience to facilitate digital processing.

Let us consider a subset of a gravity data, which is defined
as B = “Bouguer gravity anomalies greater than 31.52 mGal”.
One can define this as a subset with only “31.52 mGal”.
However, we know that it is not practical to create an infinite
number of subsets to represent certain information. A more
logical choice to subset such data sets would be to include a
family of observations whose values are close to this particular
measurement. The elements in this subset can have varying
degrees of information content as well as varying degrees of
uncertainty. Further, a subset of the geological map can be
defined as F = “felsic intrusives”. This spatial subset of a
geological map has a number of uncertainties such as boundary
errors, identifying the rock, and scale and drawing errors onto
a map. Similarly, most geological and geophysical information
cannot be precisely represented using the classical set theory,
neither in temporal nor spatial domains.

Suppose an explorationist is searching for a favourable area
for base metal deposits in a survey area, and he has an aeromag-
netic map. Analysis of the map will provide a subset of several
anomalies, some of which may be indicative of base metal
deposits. However, physical size, shape and degree of magnetic
induction associated with each anomaly may be more appropri-
ately represented by some other method than the classical set
approach. The uncertainties of interpreting each anomaly and
of correlating the results with the physical parameters, repre-
sentative of a base metal, also pose problems. If there are more
than one data sets, anomalies and/or evidences indicative of
base metal deposits with varying degrees of uncertainties, they
can first be quantitatively integrated and then reassessed. Simi-
lar anomalous features may then be identified from different
data sets at the same or different location, as expert exploration-
ists often do. One of the major tasks of today’s integrated
exploration is to include mathematically proper representation
of the information from different data sets and to develop an
effective tool for accurate and efficient combination of the
evidences from each data set to obtain the most reasonable and
realistic interpretation. For this purpose, fuzzy set theory pro-
vides a more precise method of representing the information
content of different data sets and of combining them with a
choice of processing operations.

Application of the fuzzy set theory investigated below is
tested with the remote sensing and geophysical data sets col-
lected over the Farley Lake area of Manitoba. The study area is
mapped using various geophysical and geochemical techniques
and also using airborne MEIS-II (Multi-detector Electro-opti-
cal Imaging Scanner-II) and airborne MSS (Multi-spectral
Scanner). Detailed correlation of the various geochemical and
remote-sensing data was reported by Singh et al. (1989). In this
study, integrated information of nine geological and geophysi-
cal data sets is correlated with only bands 1 and 2 of MEIS-II
image data because, according to the previous study (Singh et
al., 1989), only these two bands have positive correlation with
iron and copper concentration anomalies in the study area.
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Quenouille (1956) introduced a mathematical technique for
reducing the information bias, which can result during the data
processing, by splitting the sample into n groups if the sample
is composed of n pieces. This was later nicknamed the “jack-
knife technique” by Tukey (1958). As mentioned above, inte-
gration steps involve operations of combining information from
different data sets. Aside from some difficulties in choosing
appropriate combination operators, the jackknife technique can
be easily applied to the above-described overall process to
reduce the bias of combination and, in turn, to evaluate the
degree of the operational bias.

In this paper, fuzzy set theory and the jackknife technique are
briefly reviewed and applied to a mineral exploration example
from the Farley Lake area of Manitoba. This test area was also
the site of an integrated exploration study to determine the
feasibility of using airborne MEIS-II and MSS data as a poten-
tial biogeochemical mineral exploration tool (Singh et al.,
1989). The final results of this work are digitally overlaid on
bands 1 and 2 of the MEIS-II image of the test area for further
effective utilization of the digital information.

Fuzzy SET THEORY
The fuzzy set theory was first systematically formulated by
Zadeh (1965). A fuzzy set of A is a set of ordered pairs:

A:]I.{Xs I-L_A()«')Il X c X’ " (])

where X is a collection of objects and U, (x) is called the
membership function or degree of compatibility of x in A;
W4(x) maps X to the membership space. The range of p4(x) is
usually, but not necessarily, defined in [0,1], where 0 expresses
nonmembership and 1 full membership. The fuzzy membership
function is, in general, completely different from the traditional
probability concept. For example, if one wishes to assign a
membership function to occurrence of a certain mineral in a
rock type, a mathematician can take a number of samples and
carry out modal analysis for that particular mineral distribution
and precisely determine the probability with which the mineral
would occur in the rock sample. However, a geologist can
assign a fuzzy membership for an expected occurrence of a
certain mineral according to petrological and mineral deposits
principles, which can be quite different from the mathemati-
cian’s probability value. In another mathematical example, a
fuzzy membership function representing the case of ““a number
x will be a real number close to 10" can be

A={[x% @] @ =[1+@-101"}.
This equation certainly does not represent a probability distri-
bution function even though it does represent the possibility that
the number x will be a real number close to 10 and even though
the function itself has the appearance of a probability distribu-
tion function. In general, geophysical data represent informa-
tion induced by anomalous subsurface bodies, which obey
theoretical and/or empirical laws. But they, in most cases,
cannot be represented by any specific probability distribution
function. Therefore, it is important to point out that the fuzzy
membership function to be applied below is, by definition,
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different from the traditional probability functions. It does,
however, represent specific information according to the gov-
erning principles of the anomaly generating physical processes.

The information content of a magnetic anomaly with respect
to a chosen exploration target can thus be represented by a
continuous fuzzy membership function or by a discretized
fuzzy membership function. In the traditional approach of
inversion method, inversion results will have continuous re-
versely inverse sources projected onto the surface. Similarly,
but in a simpler approach, fuzzy membership function can be
estimated and assigned by discretizing the anomaly and by
relating the induced magnetic field values with the susceptibil-
ity values of typical local lithological units. With aid of the
fuzzy set theory, each subset of available data sets can be
redefined as mentioned above. For example, for a subset B =
“Bouguer anomalies greater than 31.52 mGal”, a membership
can be estimated for each observation according to the potential
field theory, and precision of the observation. For the subset F,
a membership can be defined according to the degree of cer-
tainty of identifying a rock type and/or according to strength of
the evidence which supports the identified rock type, being a
felsic intrusive. Similarly, an explorationist can assign a mem-
bership to each geophysical anomaly according to the govern-
ing physical principles and the interpreter’s expertise.

The support of a fuzzy set A can thus be defined with respect
to the degree of support level ¢, in which case

Ag=[xe X1 nix)>a] .

This type of a-level support representation of fuzzy member-
ship function approach further extends the applicability of the
fuzzy logic approach of integrating imprecise and incomplete
data, such as is often the case with geological and geophysical
data processing and interpretation. A detailed description of
various types of fuzzy membership function can be found in
Zimmermann (1985).

In this paper, nine geological and geophysical data sets
(Figure 1) from the Farley Lake area (Figure 2) are digitally
represented using fuzzy memberships and processed. The two
exploration targets tested for, towards integration and sub-
sequent identification of the favourable areas, were “existence
of a base metal deposit” and “existence of an iron formation
deposit”. For example, an iron ore deposit often produces a
prominent magnetic anomaly in the aeromagnetic map and this
knowledge is used for scaling and ranking the information
contained in the aeromagnetic map in the integrated mineral
exploration. When the exploration target changes from the “iron
ore deposit” to a different target, information represented by the
aeromagnetic map has to be reprocessed. As shown in Table 1,
pixels with magnetic field anomaly greater than 3000 y are
assigned Ly(i, j) = 0.35, pixels with anomaly range of 500y to
3000 v, Wi, j) = 0.20, etc. Determination of the initial fuzzy
membership function critically depends on the exploration
target and related geological deposit characteristics. In general,
initial fuzzy function representation also depends heavily on the
expertise of the exploration geophysicists and can sometimes
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Fig. 1. Schematic diagram of spatial information layers.
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Fig. 2. Farley Lake area of Manitoba, Canada. The inset shows the
study area.

be very qualitative. However, subsequent steps, including the
integration of multilayered information using various operators
are quantitatively precise. The estimated fuzzy membership
function for geological and geophysical data being tested are
tabulated in Table 1. Many of the data sets listed in Table 1
represent interpreted values in the original survey reports, with
respect to either of the two exploration targets being considered.
When it was necessary, each digital data-set layer was normal-
ized and scaled to comply with the respective mineral deposit
theory.

INTEGRATION OF FUZZY INFORMATION LAYERS
Imprecise and incomplete information, represented using
fuzzy logic, can be manipulated and processed using fuzzy set
operations. Among the more than two dozen fuzzy set opera-
tors, some of the more basic operations which are most

December 1991



P. AN, W.M. MOON and A. RENCZ

frequently applied to processing of information are as follow
(Zimmermann, 1985):

1. Min-operator
The membership function pefx) of the intersection
C=A N B is defined by

He(x) =min [ pa(x), pp(o) | . 2
This operation is interpreted as logic “AND”.

2. Max-operator
The membership function ppfx) of the union D = A U B is
defined by

Up(x) =max [ Ha(x), ua(x) ] . 3)

This operation is interpreted as logic “OR”.

When there is more than one layer of information represented
using fuzzy membership functions, integration of each contrib-
uting information can sometimes appear to compensate each
other in the final result. In geological problems, varying degrees
of compensation usually results in the final integrated informa-
tion, if each contributing information layer is dependent on each
other. For exploration examples involving geological reasoning
processes, a certain degree of compensation is desirable and the
following algebraic and y operators can be used for such prob-
lems.

3. Algebraic-sum operator
The algebraic sum C = A + B is defined as

C=ilx, pass)] 1xe X |, )
where
Has(X) = La(x) + Up(x) — Pa(x) = Pp(x) .

The min-operator does not allow compensation between low
and high level of membership representation. The full compen-
sation is assumed by max-operator (Zimmermann, 1985). The
algebraic sum may also be interpreted as logic “OR”, but not
only does it assume full compensation, it is also increasive. The
membership increases whenever it is combined with a nonzero
membership.
4. y operator
The vy operator is defined by Zimmermann and Zysno
(1980) as a combination of algebraic product and algebraic
sum. The membership function pa(x) of the y aggregation
of fuzzy sets Aj, Az, Az, ... A, is defined as

wa@) = [ [ raon ™ {1 =TT 11 = o)’
=5 i=1
)
(ele G =y < 1);

4

Table 1. Table of membership functions: [u,(x) ... membership func-
tion for iron ore deposits]; [iLa(x) ... membership function for base met-
al deposits].

Hi(x) Ha(X)
Aeromagnetic Data (y)
> 3000 0.35 0.10
500 - 3000 0.20 013 |
<500 0.05 0.15 ‘
Ground EM Data
=20 0.25 0.23
10-20 0.20 0.18 |
4-10 0.15 0.14 ]
<4 0.05 0.06 [
Airborne EM
B 0.20 0.15
65 0.18 0.13
D 0.15 0.11
E 0.13 0.10
Band 0.10 0.08
No anomaly 0.05 0.05 |
Ground Resistivity Data (ohm-m) |
<100 0.30 027
100 - 500 0.25 0.20
500 - 1000 0.20 013
= 1000 0.05 0.06
IP Chargeability Data™ (mV/ V)
=40 0.25 0.27
20 - 40 0.20 0.20
6-20 0.15 0.13
<6 4 0.05 0.06
| VLF EM Data (Annapolis)
| =80 0.20 0.20
50 - 80 0.15 0.15
20 - 50 0.13 0.10
<20 5 0.10 0.06
VLF EM Data (Seattle)
>80 0.20 0.20
50-80 0.15 0.15
20 - 50 0.13 0.10
<20 = 0.10 0.06
Airborne INPUT EM Data
No anomaly 0.05 0.07
Anomaly area 0.15 0.09
2 017 0.11
3and 4 0.19 0.13
5and 6 0.22 0.15
Geological Map
Felsic Intrusive 0.05 0.20
Basalt - Andesite 0.18 0.15
Iron Rich Rocks 0.35 0.10
Picrite 0.20 0.10
Mafic Intrusives 0.25 0.10

: The survey parameters for the ground EM survey were: operating frequency
= 2400 Hz; Coil spacing = 300 m; and the coil configuration — horizontal
loop. The anomaly was citimatcd as percentage of the ratio (Hs/ Hp), which
is equal to [(in phase/Hp) + (out of phase/Hp) |

" The airborne EM anomaly map used in this study was graded A, B, C, ... in
the original map to represent the relative amplitude ranges. The “Band”
represents low and wide bands of weak anomalies.

g Time domain IP with pole-dipole array configuration.

: VLF H-field (21.4 kHz), Station NSS, Annapolis, USA.

3 VLF H-field (24.8 kHz), Station NLK, Seattle, USA.

* The INPUT decay curve was sampled six points but the sample interval was

not specified. The anomaly # represents areal anomaly strength.
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This operator allows different degrees of compensation de-
pending on the choice of y. Given a task of combining two or
more sets of information, the choice of an appropriate y value
provides compensatory process in the aggregation of subjective
information categories. Suppose one finds a very high possibil-
ity in one data set towards a chosen hypothesis (i.e., exploration
target), while another data set fails to show any possibility
towards the same hypothesis, or even negative possibility. In
such cases, one’s total confidence level, estimated by combin-
ing the two data sets would lie somewhere between the high
and the low confidence, i.e., the compensation occurs between
the high confidence and the low confidence. Degree of com-
pensation between the two extreme confidence levels is deter-
mined by choice of y. There is no compensation when y= 0 and
full compensation when y= 1 (Figure 3).

If the combination of two sets of information is modelled
using max-operator, the lower confidence is usually ignored
and the higher one is chosen as the combination of the confi-
dences, as if there does not exist a data set which actually can
produce a low or negative possibility. If the same problem is
integrated using algebraic sum, the total confidence level in-
creases regardless of low or negative confidence. In many real
problems, neither the max-operator nor the algebraic-sum
model combines the information properly (Moon and An,
1990). Several criteria for selecting appropriate aggregation
operators are given by Zimmermann (1985, p. 34), who does
provide helpful hints for choosing optimum operators for a
specific model or situation.
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Fig. 3. Plot of the Zimmermann operator with y = 0.975. The vertical
axis represents the membership functions for the integration of two
data sets, A and B. The p, and pg represent membership functions for
the two data sets A and B and the p. represents that of the integrated
information.
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JACKKNIFE ESTIMATION

Quenouille (1956) introduced a technique for reducing the
bias from one information layer with respect to the rest by
grouping the sample into » groups if the sample is composed of
n pieces. In this case the bias means unjustified representation
of one particular information layer in the multilayer information
environment. In the application of integrating multilayer spatial
data sets, jackknife techniques can be used to evaluate the bias
during the combination and, in turn, to reduce the bias of
combination.

LetY;, Y2, ... Y, be a sample of independent and identically
distributed random variables from different data layers. Let
be an estimate of 8 based on the sample of n spatial information
layers. Let B, be the corresponding estimate based on the
sample of (n - 1) spatial data layers, where the ith layer has been
deleted. Then,

Brzab b @iyl (6)

wherei="1,"..., n.
The estimator,

e 7
§="3 8.

i=1

has the property that it eliminates the order 1/n term from the
expression of bias of the form

E(Q)=e+“1+0(i2) : ®)
n H

where E(y) is the mathematical notation for “estimator of y”
and O(n) is the remainder term of the expansion for the estima-
tor function.

In an abstract, Tukey (1958) proposed that @;(f’ =8l . oh)
could, to a close approximation, be treated as »n independent
estimates and it is in many instances identically distributed.
Then,

l H (())

.2
m Z (@r_e)

i=1

becomes an estimate of Var(0) (Miller, 1968). In an unpub-
lished work, Tukey called b, pseudovalues and created the name
jackknife estimator for 8 in the hope that it would be a rough-
and-ready statistical tool (Miller, 1974). There are two aspects
of the jackknife technique, namely, bias reduction and interval
estimation. In this paper only the bias reduction property has
been applied to estimate the combined possibility and evaluate
the operations of combination.

INTEGRATION OF DaTA SETS UsiNG Fuzzy SET THEORY

Integrated mineral exploration problems, in the sense of
problem solving, can be decomposed into subproblems based
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on their specific functions. The estimation of total possibilities
from all the given fuzzy sets of information, meaning geologi-
cal and geophysical data base which are intrinsically nonclas-
sical sets, can be modelled using “AND/OR™ graph and the
possibilities can be propagated along the graph. In resource
exploration, the exploration target becomes the “top hypothe-
sis” or “proposition”. Searching for the exploration target can
be decomposed into the evaluation and identification of favour-
able conditions indicative of a specific target deposit. The
simplest decomposition is to identify the mineral deposits’
criteria indicated by different data over the exploration area. In
the simplest case, the graph has one step from the top node to
the terminal nodes and it contains only “OR” node. This is
obviously too simple to be a knowledge-based approach, but it
provides an adequate test for the applicability of the fuzzy set
theory in the framework of an expert system for nonrenewable
resource exploration.

The above proposed fuzzy logic approach of integrating
geological and geophysical information is tested with the same
data sets (Figure 4) as the ones used by Moon and An (1989)
over the Farley Lake area (Figure 1). The top hypotheses or
propositions are “Iron formation” and “Base metal deposit”.
The terminal nodes or the fuzzy subsets are “data showing signs
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of iron formation deposits” and “data showing signs of base
metal deposits”. For example, the fuzzy set from aeromagnetic
data is “magnetic anomalies showing iron formation deposits”
and “magnetic anomalies showing base metal deposits”, etc.
Nine terminal fuzzy sets are obtained by assigning membership
functions to each data set, according to the mineral deposit
theory and based on the normal interpretation process of each
geophysical data set. The membership functions used in the
subsequent integration are shown in Table 1.

These fuzzy sets are then aggregated by using both algebraic-
sum operator and 7y operator with y = 0.975, respectively. The
theoretical curves of aggregating two fuzzy sets A and B using
y operator are shown in Figure 3. As explained in the previous
section, choice of y = 0.975 represents the degree of compen-
sation allowed in the aggregate formation.

The results of combining all membership functions of the
terminal fuzzy sets represent the membership function of our
top hypotheses or propositions: “Iron formation deposits” and
“Base metal deposits”. The resulting membership functions
give us the possibility distribution for iron formation and base
metal deposits. The results are plotted in grey level maps
(Figures 5a, 5b, 6a and 6b). Figures 5a and 6a are computed
using 7y operator and 5b and 6b using algebraic-sum operator.
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Fig. 4. (a) Airborne EM map of the test area (INCO, 1954); (b) airborne magnetic total field map (Geological Survey of Canada, Open-File Report
1047, 1984); (c) ground EM map of the test area (Chevillard and Genaile, 1970); (d) geology map of the study area (Dept. of Energy and Mines, Prov-
ince of Manitobay); (e) IP chargeability map (time domain IP with pole-dipole configuration) (Manitoba Mineral Resources Lid. Project 654); (f) ground
resistivity map (Manitoba Mineral Resources Ltd. Project 654); (g) VLF horizontal EM (transmitting station NSS at Annapolis, USA) (21.4 kHz) (Mani-
toba Mineral Resources Ltd. Project 654); (h) VLF horizontal EM (transmitting station NLK at Seattle, USA) (24.8 kHz) (Manitoba Mineral Resources
Ltd. Project 654); and (i) airborne MK VI INPUT EM (6 channels, Questor Surveys Ltd.).
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Fig. 5. (a) Possibility map for base metal computed using y operator; (b) possibility map for base metal computed using algebraic-sum operator.
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The pattern of the two maps, 5a and 5b, is essentially the same
and both have a relatively higher possibility distribution in the
west central area. The relative possibility distribution for iron
formation (5a and 5b) are also similar although the absolute
values are quite different.

Some of the data layers have only partial spatial coverage
with no data in certain parts of the map. This situation has
effects in the choice of y value. If all the data sets had complete
coverage, the result with higher resolution could be generally
expected, if an appropriate ¥ value is used. Incomplete spatial
coverage of some of the data layers appears to result in errone-
ous final result even with carefully chosen 7y values. In such
cases, it is safe to use y values close to 1.

Values of membership functions which were assigned to each
data set and, consequently, the results obtained by combining
the terminal fuzzy sets are relative. Although the membership
is defined in [0, 1], membership close to 1 does not necessarily
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Fig. 6. (a) Possibility map for iron formation computed using y operator; (b) possibility map for iron formation computed using algebraic-sum operator.

represent true degree of certainty of the target proposition such
as, “There is a base metal deposit™.

COMMENTS ON JACKKNIFE TEST

The jackknife estimations for both results, obtained using y
operator and algebraic-sum operator, are computed and plotted
in grey level maps (Figures 7a, 7b, 8a and 8b). The jackknife
estimator does not necessarily confine its estimations between
[0, 1] although the membership is defined between [0, 1].

Comparing the relative possibility distribution of Figures 5a,
5b, 6a and 6b with their corresponding jackknife estimations,
there is no significant difference between them except that the
absolute values of possibility have increased. The patterns of
jackknife estimation are visibly influenced by incompleteness
of the spatial coverage of each data layer. The variances are
computed from equation (9). For the proposition of “base metal
deposit”, the pixel variance ranges from 0.0 to 0.0077 using the
7y operator, whereas a range of 0.0 to 0.0103 was obtained using
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Fig. 7. (a) Jackknife estimate map for base metal (y operator with y = 0.975); (b) jackknife estimate map for base metal (algebraic-sum operator).
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the algebraic-sum operator. Variance ranges from 0.0 to 0.0248
for the proposition of *“iron formation™ when the y operator was
used, and from 0.0 to 0.033 when the algebraic-sum operator
was used.

The first-order bias, defined from equation (8), is

a

4 _EB)-10+0() .
n

and it was computed for both final results, each with both
operators. The plots of bias for each result are shown in Figures
9a, 9b, 10a and 10b. For easier comparison, Figures 9a and 9b
were plotted using the same grey level scales, as were Figures
10a and 10b. From the above tests, it becomes apparent that the
variance of the integration results obtained using 7y operator is
in general low, and the results obtained using y operator are less
biased than those obtained using algebraic-sum operator.
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Fig. 8. (a) Jackknife estimate map for iron formation (y operator with v = 0.975); (b) jackknife estimate map for iron formation (algebraic-sum operator).

DiscussionN aND CoNCLUSION

Limited capabilities of the conventional classical set ap-
proach of combining geological and geophysical data, such as
many currently available GIS’s, have been known for some
time and there is a need for a new mathematical approach.
Precise representation of spatially interpolated geological and
ground and/or airborne geophysical data does not appear pos-
sible with present day GIS, except perhaps with the use of a
combined probability approach. In this study, the theoretical
basis of the fuzzy logic approach is reviewed and illustrated
with test data from a mineral exploration project in northern
Manitoba, Canada (Moon and An, 1990). The results indicate
that the fuzzy set theory method provides a tool that can
adequately represent and manipulate the imprecise and incom-
plete information contained in each of geological and geophysi-
cal data sets. The possibility map for each of the top hypotheses,
“Iron formation deposit™ and “Base metal deposit”, does outline
the most favourable areas, in general, more accurately than the
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Fig. 9. (a) First-order bias for the possibility map for base metal (y operator with y = 0.975); (b) first-order bias for the possibility map for base metal (al-

gebraic-sum operator).
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Fig. 10. (a) First-order bias for the possibility map for iron formation (y operator with y = 0.975); (b) first-order bias for the possibility map for iron forma-

tion (algebraic-sum operator).

conventional, intuitive approaches. The possibility values ob-
tained by using algebraic-sum operator are larger than those
obtained using the y-operator method. This is because the
algebraic sum is increasive, while a certain degree of compen-
sation was eminent with the y-operator method because the
values of y chosen are less than 1. The final favourable target
areas outlined are essentially the same in this case. And, in fact,
mineral deposits such as sulphide facies iron formation, Ni-Cu
deposits and gold deposits were discovered in the areas outlined
by this study. Comparison of the two results obtained using both
the algebraic-sum-operator and the y-operator methods indi-
cates that the possibility map produced using y operator does
have higher resolution. At present the usefulness and accuracy
of the higher resolution information attained using the y opera-
tor is not yet tested in detail, but it would definitely be a
desirable feature in a geologically complex area.

Both bands 1 and 2 images of MEIS-II data have shown
positive correlation for base metals and band 1 with iron ores

in the previous biogeochemical remote sensing study (Singh et
al., 1989). Although comparison of possibility distribution with
both images (bands 1 and 2) show very low direct correlation
in this study, the coregistered MEIS-II images provide excellent
auxiliary information (Figures 12a and 12b) for mineral explo-
ration. For simultaneous display of the MEIS-II (bands 1 and
2) images with the final possibility map, the pixel values of the
possibility map had to be rescaled for the most optimal visual
effects. The histograms for the two final possibility maps are
shown in Figures 11a and 11b, after they were rescaled onto the
0 — 255 intensity levels. With further refined spectral-window
resolution for specific target elements, airborne images such as
MEIS-II should provide a very useful tool in direct reflectance
mapping and in integrated exploration.

In conclusion, the test results demonstrate robust effective-
ness of the fuzzy logic approach of integrating multiple spatial
data sets such as geological and geophysical data. At present,
representation of certain geological, geochemical and
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Fig. 11. (a) Histogram showing pixel intensity of the possibility map for the proposition for base metal; (b) histogram showing pixel intensity of the pos-

sibility map for the proposition for iron formation.

geophysical information using fuzzy membership function still
requires expertise of the exploration specialists. Once this in-
itial step is completed, the rest of the information integration
and subsequent representation of results can be done precisely
and automatically using any type of GIS package, with mini-
mum ambiguity. This new fuzzy logic approach also minimizes
the human bias in the sense that the information bias, which
could have been introduced during the initial information rep-
resentation step, can still be estimated using the jackknife
estimator, if it becomes necessary during the interpretation
stage. One of the deficiencies of this method, at present, appears
to be that there is no adequate way of representing ignorance as
in the evidential belief function approach (Moon, 1989; Moon
and An, 1990). The low possibilities computed in the final
results can only represent either lack of data or negative possi-
bilities provided by the original data sets. The fuzzy logic
approach does not allow one to analyze the nature of low or
negative possibilities. Another important aspect to be investi-
gated further in applying the fuzzy logic approach is that there
is no standard aggregation operator. This dilemma, in certain
situations, provides flexibility but more often causes consider-
able confusion and can lead to nonuniqueness of the method.
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Fig. 12. (a) Possibility map for base metal displayed over a composite of bands 1 and 2 of the MEIS-II image over the test area. The blue hue (with
contours) overlaid on the MEIS-Il image represents the amplitude of the integrated fuzzy membership function towards the exploration target of base
metal; (b) possibility map for iron formation displayed over a composite of bands 1 and 2 of the MEIS-II image over the test area. The blue hue on this
image represents the fuzzy membership function, as above, but for the exploration target of iron formation.




