
From Gaal, Gabor and Merriam, Daniel F., (eds.), 1990, Computer Applications in Resource Estimation

Prediction and Assessment for Metals and Petroleum, Pergamon Press, Oxford.

Statistical Pattern Integration for Mineral Exploration* 

F.P. Agterberg, G.F. Bonham-Carter, and D.F. Wright 

Geological Survey of Canada, Ottawa 

Geological Survey of Canada Contribution No. 24088 

ABSTRACT

The method of statistical pattern integration used in this paper consists of reducing each set of mineral
deposit indicator features on a map to a pattern of relatively few discrete states. In its simplest form the
pattern for a feature is binary representing its presence or absence within a small unit cell; for example,
with ar ea of 1 km 2 on a 1:250 ,000 map . The featu re of interest n eed not oc cur within  the unit cell; its
"presence" may ind icate that the unit cell occurs within a  given distance from a linear or curvilinear feature
on a geoscience map. By using Bayes’ rule, two probabilities can be computed that the unit cell contains a
deposit. The log odds of the unit cell's posterior probability is obtained by adding weights W+ or W - for
presence  or absenc e of the featu re to the log od ds of the prio r probability . If a binary patte rn is positively
correlated with deposits, W+ is positive and the contrast C=W+-W - provides a measure of the strength of
this correlation. Weights for patterns with more than two states also can be computed and special
consideration can be given to unknown data. Addition of weights from several patterns results in an
integrated pattern of posterior probabilities. This final map subd ivides the stud y region into a reas of unit
cells with different probabilities of con taining a mineral deposit. In this paper, statistical pattern
integratio n is app lied to occurrence of go ld miner alization in Meguma T errane , eastern  mainlan d Nova
Scotia, Canada. 

INTRODUCTION

Geoscience maps of different types are to be integrated for target selection in mineral exploration. The
geologist stacks the se maps an d looks for co mbinations of indicato rs favorable fo r occurren ce of depo sits
of different types. The calculations required for mathematical analysis of digitized patterns for points,
lines, and ar eas have be en greatly aide d by the de velopment o f microcom puter base d geographic
information systems for th e treatment o f map data (B onham-C arter, Agterberg, a nd Wrigh t, 1988). T his
has led us to develop further a new method for statistical pattern inte- gration simulating the practice of
exploration geologists to combine maps for deline- ating favorable areas. This method was proposed
initially by Agterberg (in press) for combining geophysical survey data with prior probabilities of
occurren ce of massive s ulfide depo sits in the Abitib i area of the C anadian Sh ield originally o btained in
1971. The prior probability for a massive sulfide deposit being in a small unit cell was assumed to be
constant within a larger cell. The frequency of massive sulfide deposits had been estimated by regression
analysis from lithological and other variables systematically coded for such larger cells. Other geoscience
data for the same area (B ouguer anomalies, aerom agnetic anomalies, and bo undaries betwee n tertiary
drainage basins) had been quantified later as patterns of two or more mutually exclusive states by Assad
and Favini (1980). The patterns for proximity to aeromagnetic anomalies and bouinlaries between
drainage ba sins were b inary, need ing only two  colors (blac k and white ) for represe ntation. It was  possible
to compute weights W i

+ and W i
- representing the states of presence and absence in the unit cell for each

binary pattern i. 

In Assad a nd Favin i (1980 ), the pa ttern for  the Bouguer an omaly h ad five  distinct states with different
colors. In Agterbe rg (in press), a w eight W j

+ was computed for each color j of this pattern with more than
two states. At any point within the study area, the weights for the geophysical variables were added to the



Figure 1. Artificial example to illustrate concept of combining two binary pat- terns related to
occurrence of mineral deposits; (A) outcrop pattern of rock type, lineaments, and mineral deposits;
(B) rock type and deposits dilatated to unit cells; (C) lineaments dilatated to corridors; (D) super-
position of three patterns.

log odds of the prior probability. This gave the log odds of the posterior probability. Because the patterns
combined with one another all consisted of polygons, the final product was also polygonal with different
colors for classes defined for the posterior probability per unit cell. The addition of weights W+ or W - is
perm itted  only  if the  patte rns being integr ated  are condition ally  independent of occur renc e of d eposits.  In
the Abitibi study it was shown that this condition is satisfied approximately for the geophysical variables.
In this paper, the method will be ap plied to gold deposits in Me guma Terrane, No va Scotia. 

An advantage of the statistical pattern integration method with respect to most existing methods in the

field of regional resource evaluation (e.g., logistic regression) is that a pattern need be available only for

parts of the study region. However, if one or more patterns are missing at a given place, the estimated

posterior probability has less certainty than those based on more or all patterns. This type of uncertainty,

the result of one or more missing pa tterns, will be studied later in the pape r. 

Finally, special attention should be given to verification of the theoretical assumption of conditional
independ ence. Th e simple add ition of we ights for differen t features is pe rmitted only  if this assump tion is
satisfied. In general, the possibility of occur rence of conditional dependence increases with an increasing
number of patterns. Failure of the method in this respect would lead to discrepancies between frequencies
as predicted by the posterior probability map and the corresponding observed frequencies. If the
assumption of conditional independence is not satisfied, the theoretical frequencies would exceed the
observed frequencies in the most favorable parts of the region. At the end of the paper, we provide a
statistical test for comparing the theoretical and observed frequencies with one another. First, the method
of statistical pattern integration will be explained  by using a simple artificial example. 

Figure 1 illustrates the concept of combining two binary patterns for which it may be assumed that they
are related to occurrence  of mineral deposits of a given type. Figure 1A shows locations of six deposits,
the outcrop pattern of a roc k type (B) with which  several of the deposits may be a ssociated (see Fig. 1B),
and two lineamen ts which have been d ilated in Figure 1 C to provide corrido rs (C). Within the corrido rs
the likelihood  of locating dep osits may be  greater than els ewhere  in the study  region. Poin ts situated bo th
on the rock ty pe and w ithin the linea ment corrid ors may ha ve the largest pro bability of co ntaining dep osits
(see Fig. 1D ). In Figures 1B  to 1D, the d eposits are su rrounded  by a small un it area. This a llows us to
estimate the u nconditio nal probab ility p(d) that a u nit area con tains one deposit if it is locate d random ly



Figure 2. Venn diagrams corresponding to areas of binary patterns in Figure 1;  (A) is for Figure 1 B;  (B) is for
Figure 1 C; (C) is  for Figure 1 D.

within the study area, and the conditional probabilities p(d | b), p(d | c), and p(d | be) for occurrences on
rock type, corridors and overlap of rock type and corridors, respectively. These probabilities are estimated
by counting how many deposits occur within the areas occupied by the polygons of their patterns. The
relationships between the two patterns B and C, and the deposits, D, can be represented by Venn diagrams
as shown sche matically in Figure 2. 

METHOD OF STATISTICAL PATTERN INTEGRATION 

For the roc k type (B) an d the corridors (C), the r elative areas as signed to the se ts and their o verlap (BC ) in
the Venn  diagrams are e qual to the c orrespon ding relative area s in the study  region. The  set for depo sits
(D) is show n as a broken  line in Figure 2  to indicate tha t its relative area de pends on  size of the un it cell.
In Figure 2C, D is divided into four su bsets which can b e written as BCD , BCD, BC D, and BC D where
each bar indicates complement or "absence" of B or C. The relative areas of the subsets is equal to the
relative proportions of total number of deposits belonging to the subsets . Suppose th at relative area is
written as Mes (for me asure). Then B a nd C are condition ally independent of D  if 

This is equivalent to assuming either 

The latter two expressions can be readily visualized by comparing Figure 2A to Figure 2C and Figure 2B
to Figure 2C, respectively. Obviously, B and C are not necessarily conditionally independent of D.
Howe ver, this assump tion is consid erably w eaker than as suming that tw o patterns a re statistically
independ ent. For ex ample, if B w ere indepe ndent of C , we wo uld have exactly: 

In our type of  application , Mes(B C) is greater tha n Mes(B ) x Mes(C ) because  both B an d C are po sitively
correlated with D. 



The relatio nship betw een B, C , and D ca n be expre ssed by the  following (2 x2x2) tab le of proba bilities: 

Here B,  C, and D  are regarded  as random  variables wh ich are eithe r present or a bsent in a un it cell.
Absence is indicated by a bar. The eight probabilities in this table add up to one. If the assumption of
condition al indepen dence of B  and C ho lds true, the eigh t probabilities  in the table als o are mutua lly
related by: 

This result fo llows from  combining th e first part of E quation (2 ) with the ide ntities: 

Equation (4) implies that all eight probabilities in the table can be determined from only five individual
probabilities or functions of probabilities. In our approach we 

will use for these five constants, the prior probability p(d) and the weights Wb
+, Wb

-, Wc
+ and Wc

- defined

as: 

Weights of evidence W+ and W - were previously used  by Spiegelhalter (1986). 

Two binary patterns, B and C, give four posterior probabilities for D=d. These are 

  It is convenient to work with odds (O) instead of probabilities

with O= p/(l-p) and p =O/(1+O ). Then: 



This is the extension of Bayes' rule which holds true only if B and C are conditionally independent with 

with di=d (for i=l) or d i=d (for i=O). 

Previous applications of the assumption of conditional independence in mineral exploration include those
by Duda and others (1977) and Singer and Kouda (1988). Even if this assumption is not satisfied, we
always h ave: 

and equiva lent expres sions for O (d | b), O(d | c), and  O(d | c). The  latter are formu lations of B ayes' rule
which has had  many previous geological application s (cf. Harbaugh, Do veton, and Davis, 1977).
Extensio ns of Equ ation (7) to mo re than two  patterns are  readily mad e. For exa mple, if A is con ditionally
independ ent of B an d C, then: 

with seven equivalent expre ssions. 

Part of the u sefulness o f this approa ch for mine ral exploratio n results from  the fact that it can be assumed
that weights such as Wb+ are independent of the prior probability p(d). For example, if there would be as
many undiscovered deposits in the region as there are known deposits, then the prior probability p(d)
becomes twice as large. However, weights such as Wb+ =loge p(b | d)/p(b | d) remain the same even if p(d)
is changed provided that the proportion of new deposits associated with B=b would not change during
exploration in future. 

APPLICATION TO GOLD DEPOSITS IN MEGUMA TERRANE 

Wright, Bonham-Carter, and Rogers, (1988) have used regression analysis to determine the multielement
lake-sediment geochemical signature that best predicts the catchment basins containing gold occurrences
in Meguma Terrane, eastern mainland Nova Scotia (see Fig. 3). Their geochemical signature was reduced
to a ternary pattern (Fig. 4) for this study. Bonham-Carter and others (1988) have coregistered and
analyzed a variety of regional geoscience data sets for this same study area using a geographic information
system. A number of these  data sets also are used in this pap er. 

Bonham-Carter and others (1988) have pointed out that the mechanism of gold mineralization in the study
area is not well understood. Various authors have proposed different genetic models, emphasizing
stratigraphic control, structural control, or importance of the intrusive granites as a source of mineral-rich
hydrothe rmal fluids. D ifferent proc esses have p layed a role  in the formatio n of some o r all of the gold
deposits. By the method given in this paper, the spatial relationships to gold mineralization of patterns
based on different genetic mo dels can be compa red and integrated with on e another. 





The patter ns to be com bined w ith one ano ther are: (1) D rainage basin s classified ac cording to favo rability
index derive d from lake sed iment geoch emistry (Fig. 4); (2 ) Bedroc k geology (see F ig. 3); (3) Proxim ity
to axial traces  of Acadian  anticlines (se e Fig. 5); (4) Pro ximity to NW -trending linea ments; (5) Pr oximity
to Devonian granites (see Fig. 6); and (6) Proximity (within the Goldenville Formation) to the contact
between  Golden ville and Halif ax Forma tions. The  weights estim ated for thes e six patterns  are show n in
Table 1. The final map (Fig. 7) obtained by adding the computed weights to the log prior odds delineates
subareas where  most or all favorable conditions exist an d can be used in gold ex ploration. 

Four of the six patterns integrated with one another are for proximity to linear or curvilinear features.
Binary patterns (e.g., Figs. 5 and 6) were selected in each of these situations after studying how size of
neighborhood influences the contrast C=W+ - W - which provides a measure of the strength of correlation
between  a point 





Table  l. Weigh ts for modeling po sterior p robab ility of a go ld depo sit occu ring in a 1  km2 area.

Map Pattern W+ W -

Geochemical Signature 1.0047 -0.1037

Anticline Axes 0.5452 -0.7735

N.W. Lin eaments -0.0185 0.00062

Granite Contact 0.3150 -0.0562

Goldenville-Halifax Contact 0.3682 -0.2685

Bedrock Geology*

   Halifax Formation -1.2406

   Goldenville Formation 0.3085

   Granite -1.7360

* A ternary pattern where units are mutually exclusive, and weights W - for absence are not used.



pattern and  a binary pa ttern. The e xpected valu e of C is zero  if the depos its are rando mly distribute d with
respect to the pattern. The p roperties of C will be studied  later in this paper. The bedro ck geology pattern
(see Fig. 3) has three states (Goldenville Formation, Halifax Formation, and Devonian granite) and W j

+

values were computed for each of these states. When the feature is unknown in parts of the study region,
no weight is a dded or su btracted for  the unit cells. T he feature th en has a tern ary pattern w ith discrete
states fo r presen ce, absence and unkn own, r espect ively. Th e geochemical fa vorability  index for lake
drainage basins was quantified as a ter- nary pattern (see Figure 4) with W+ for most favorable signature
basins, W - for less favorable basins, and zero  weight (W o=0) for p arts of th e region w ithout la ke draina ge
basins. 

Weights for presences or absences of features obtained from different map patterns can be added if the
theoretical assumption of co nditional independe nce is satisfied. Although it may not be p ossible to verify
this assumption for all pairs of patterns co mbined with one  another, statistical tests can be used to co mpare
theoretical frequencies of deposits with their corresponding observed frequencies for subareas with the
same posterior probab ilities on the integrated pattern. 

PRACTICAL EXAMPLE OF ESTIMATION OF WEIGHTS 

The weights for individual pa tterns in Table 1 used to ob tain the integrated pattern of Figure 7 w ere
obtained from the data w hich are shown  in Table 2. The w idths of the corridors for linear features  were
selected by studying con trasts for different widths as will be ex plained in the next section. 

Table 2 Data used to compute weights W+ and W - of Table 1 and their stand ard deviations s(W +) and 
s(W -)

Map Pattern Corridor

width

Area 

(in km2)

Gold

occ. W+ s(W+) W- s(W-)

Geochemical

Signature

164.9 10 1.0047 0.3263 -0.1037 0.13278

Anitcline Axes 2.5 km 1276 .4 .50 0.5452 0.1443 -0.7735 0.2370

N.W. Lineaments 1.0 km 749.7 17 -0.0185 0.2453 0.0062 0.1417

Granite Contact 1.0 km 3825 .5 12 0.3150 0.2932 -0.0563 0.1351

Goldenville/

Halifax

2.0 km 1029 .4 34 0.3682 0.1744 -0.2685 0.1730

Halifax Formation 441.9 3 -1.2406 0.5793 0.1204 0.1257

Goldenville

Formation

2020 .9 63 0.3085 0.1280 -1.4690 0.4484

Devonian Granite 482.2 2 -1.7360 0.7086 0.1528 0.1248

An example of calculation of the positive weights W+ and the negative weights of one of the features W - is
as follows: Fifty gold occurrences are situated on the corridors of the anticline axes. The combined area of
these co rridors i s 1276 .4 km2. The total study area contains n(d)=68 gold occurrences and measures
2945.0 km2. The total number of unit cells can be set equal to n=2945. It follows that n(i)= n-n(d)=2877.
Our calculations may he based on frequencies (= p×n) instead of on probabilities p. Then:   



From n(bd) = 50 and  = 18, it follow s that  = 1226 and    = 1651. Conse quently, 

The we ights reported  in Table 2 d iffer slightly from th ese numb ers, becau se they w ere based  on slightly
more precise estimates of areas. 

Table 2 also show s estimates of standard deviations of W + and W -. These were obtained from the

variances: 

These formulae are consistent with the asymptotic expression for the contrast to the discussed in the next
section. Spiegelhalter and Knill-Jones (1984) have used similar formula to obtain standard errors of the
weights. The only difference between their formulae and ours is that Spiegelhalter and Knill-Jones (1984)
applied a correction based on the theory of binary data analysis to help remove bias from their estimated
weights as well as from the co rresponding variances. 

Eight of the sixteen weights in Ta ble 2 are more than tw ice as large, in absolute value, as their standard

deviation. These eight weights probably are different from zero, because the 95 percent confidence
interval for hypothetical zero w eight is ap- proximately equal to ±  2s. 

We have used asymptotic maximum likelihood expressions (cf. Bishop, Fienberg, and Holland, 1975,
chapter 14) for s. Such expressions are valid only if a number of conditions are satisfied including the
condition  that the prob abilities in the (2 x2) table are  neither large (=  close to one ) nor small (= c lose to
zero). The latter condition m ay have been violated during estimation  of the relatively large standard
deviations of negative weights for rock types in the lower part of Table 2, because these are based on
relatively few deposits. For example, only two gold occurrences on Devonian granite contribute 0.5 to the
variance of their weight (= -1.7360), and therefore, account for most of the value of s(W+) = 0.7086
(bottom line of Table 2) w hich is probably too large. 

The standard deviation of a posterior probability can he estimated as follows. The variance s2(p) of the
prior probability p satisfies approx imately p/n. For p = 68/29 45 = 0.0231, this yields the  standard
deviation s(p) = 0.0028. The corresponding standard deviation of loge (p/(l-p)) = -3.7 450 is app roximately
equal to s/p =  0.1213. T his follows  from the app roximate ide ntity for any  variable x w ith mean x: 



Suppose that a unit cell has the following features: Its geochemical signature is unknown; it occurs in the
Goldenville Formation not near a granite contact, and in the proximities of an anticline axis, NW
lineament, and Goldenville/Halifax contact. Then the log posterior odds is -2.598 as can be seen when the
appropriate weights are added. The variance of the log posterior odds is derived by adding variances of
weights to the variance of the log prior odds. It follows that the standard deviation of the log posterior
odds amo unts to 0.40 1. The po sterior prob ability of the u nit cell contain ing a deposit b ecomes 0. 069 with
approximate standard deviation equal to 0.069×0.401 = 0.028. In this way, a standard deviation can be
estimated for each of the posterior probabilities on a final integrated pattern. However, it will be shown
later that if one or more patterns are missing, the standard deviation of the posterior probability should be
increased due to the lack of knowledge. Because no information on geochemical signature is available for
the unit cell in preceding examp le, the final standard deviation beco mes 0.042 instead of 0 .028 (see later).
Although this final value (=0.042) is greater than the standard deviation (=0.028) computed from the
uncertainties associated with the prior probability and the weights of Table 2, it is less than the standard
deviation (=0 .087) of the  posterior pro bability (=0. 169) arising w hen the un it cell conside red for exa mple
in this section would ha ve favorable geochemical signature. 

CORRELATION BETWEEN PATTERN AND DEPOSITS 

The con trast Cb=Wb
+ -Wb

-  for a pattern B provides a convenient measure of the strength of correlation
between  B and the  pattern of de posits. The  (2x2) table  of probab ilities with marginal totals for B  and D is: 

If the deposits a re random ly distributed  within a stu dy region, w ithout prefe rence for b  or b, this table

becomes 

By using the previous definitions of Wb
+ and Wb

-, it then is readily  shown th at Wb
+

 = W j and 

C=Wb
+ - Wb

- =0. 

Table 3 for proximity of gold occurrences to anticline axes in Meguma Terrane, Nova Scotia, shows the
contrast C (x) as a func tion of distan ce x by w hich these lin ear features  were dilate d (in both d irections) to
define the binary pattern previously shown as Figure 5. Thus x is equal to one- half the width of the
corr idor s. Inspect ion o f C(x ) as a  func tion  of x p rovid es a u sefu l too l for d ecid ing on  a good valu e of x . It
should be kept in mind, that C(x) will be less precise for smaller values of x. This is because the number
of deposits  n(bd) from which p( bd) is estimate d then may  be small and  subject to co nsiderable
uncertainty. If, as before, total number of unit cells is written as n, we have p(bd)=n(bd)ln with equivalent

expressions for the other elements of the (2x2) table. 

Table 3. Weights and contrast for anticline binary patterns as function of one-half- width of corridor. Total
area sampled =  2945 km 2; total number of gold occurren ces = 68; * denotes ma ximum contrast. 



CORRIDOR

HALF-

WIDTH (in

km)

CORRIDOR

AREA (in

km2)

GODL OCC.

ON

CORRIDOR W+ W -

CONTRAST

C = W+ - W-

STANDARD

DEV. OF C

0.25 257 16 1.033 -0.181 1.213 0.294

0.50 614 31 0.811 -0.382 1.193 0.248

0.75 809 37 0.707 -0.473 1.180 0.247

1.00 995 43 0.648 -0.599 1.246 0.255

0.25 1276 50 0.545 -0.774 1.319* 0.278

0.50 1488 51 0.408 -0.694 1.101 0.283

1.75 1641 54 0.364 -0.778 1.142 0.302

2.00 1838 57 0.303 -0.857 1.160 0.332

2.25 2007 59 0.248 -0.892 1.140 0.360

2.50 2128 60 0.205 -0.872 1.077 0.379

2.75 2226 61 0.176 -0.878 1.053 0.401

3.00 2341 61 0.124 -0.701 0.824 0.402

Writin g " = ec, the following asymptotic result for large n (see  Bishop, Fienberg, and  Holland, 1975, p.
377) can be used: 

If is small compared to ", it follows fro m Equatio n (13) that th e standard  deviation of C  is

approximately equal to 

In the last column of Table 3, it is shown how this asymptotic standard deviation initially decreases as a
function o f distance. O nce the on e-half-wid th exceed s 0.75 km, the  standard d eviation con tinually
increases. An approximate 95 percent confidence interval for C is provided by ±2ô 4(C). From this it may
be concluded that the values of C shown in Table 3 are significantly greater than zero. Table 4 provides
another example of C(x) as a function of x. Both positive and negative values of C occur in Table 4 which
is for proximity to Devonian granites. The standard deviation of C now continues to decrease for wider
corridors and it is likely that none of the values of C are significantly different from zero. The maximum
value of C corresponds to a proximity of 1 km and this binary pattern was selected for use (cf., Tables 1 

Table 4. Weights and contrast for granite contact corridors as function of corridor width. Total area
sample s = 2945 km2; total number of gold occurren ces = 68; * denotes ma ximum contrast. 



CORRIDOR

WIDTH (in

km)

CORRIDOR

AREA 

(in km)

GOLD OCC.

ON

CORRIDOR W+ W -

CONTRAST

C = W+ - W-

STANDARD

DEV. OF C

0.25 121 3 0.074 -0.003 0.077 0.598

0.50 247 6 0.052 -0.005 0.056 0.433

0.75 319 7 -0.051 0.006 -0.057 0.404

1.00 383 12 0.315 -0.056 0.371* 0.323

1.25 478 13 0.167 -0.036 0.203 0.313

1.50 528 13 0.065 -0.015 0.080 0.312

1.75 582 14 0.043 -0.012 0.054 0.304

2.00 670 14 -0.102 0.028 -0.130 0.303

2.25 715 14 -0.168 0.049 -0.217 0.303

2.50 756 14 -0.226 0.068 -0.299 0.303

2.75 799 15 -0.211 0.069 -0.280 0.293

3.00 865 17 -0.170 0.061 -0.226 0.283

and 2). The corresponding weights for proximity to Devonian granite (cf. Fig. 6) are relatively small and
had relatively little effect on the final map (Fig. 7). 
In mathematical statistics, various functions of " have been proposed to express correlation between two
binary variables. Yule's "measure of association" Q=("-1)/ ("+1) (see Bishop, Fienberg, and Holland,
1976, p. 3 78) is comparable to the ordinary product-moment correlation coefficient for two continuous
variables in tha t it is confined to  the interval [-1, 1 ] with E(Q )=0 for unc orrelated bin ary patterns . It is
readily sho wn that 

which is always p ositive. Consequently, (x) as a function of x would reach its maximum at the same
value of x as C(x) (cf. Table 3). It may be concluded that the contrast C=W+ -W- provides a convenient
measure of strength of correlation b etween the patterns B  and D. 

UNCERTAINTY BECAUSE OF ONE OR MORE MISSING PATTERNS 

In the Introductio n, it was po inted out tha t posterior pro babilities do  not all have the  same precis ion if
some of them are based  on fewer patterns than  others. This situation arises wh en data for a pattern are
missing in parts of the study region. For example, the geochemical signature based on lake drainage basins
is only available for parts of our study area (Meguma Terrane, Nova Scotia). Spiegelhalter (1986, p. 37)
has proposed to regard any prior probability p(d) as the expectation of the possible final probabilities 
p(d | x) that may be obtained on observing data x 



In general,  

For the relationship between B, C, and D: 

The corre sponding var iance is: 

If only B is unknown, the information on C can be added to the prior probability in order to obtain
updated prior probabilities Pb(d) with varianc e: 

follows fro m: 

The expressions for the variances F12 (one pattern missing) and F22 (two patterns ,missing) are
independent of any other patterns for which data were available and ised to change the prior probability.
Extensions to situations with three or more missing patterns are readily made. In our example, only one
pattern is incomplete: geochem ical signature for gold deposits in Me guma Terrane. The  ternary pattern
representing geochemical signature (Fig. 4) shows those parts of the area where this feature could not be
determined. In these places, the probability pb(d) on the final map (Fig. 7) has partial uncertainty that can
be expressed by the standard deviation 1[Pb(d)]. This un certainty is pa rtial because  it becomes z ero in
places where all patterns including the geochemical signature are available, although the posterior
probabilities in these places have the ir own uncertainties w hich can be estimated b y using the standard
deviations of the weights (see before). The latter type of uncertainty of the posterior probability increases
when the pattern for geochemical signature is added. Of course, the uncertainty because of a missing
pattern decreases w hen information on the  pattern is added. 

The weights W+=1.0047 and W-=-0.1037 for the geochemical signature (cf., Table 1) were determined
from likelihood ratios for the entire area. Fo r example, W +=loge p(b | d)/p(b | d)=1.0047 was based on (1)
p(b|1 d)=p(b d)/p(d)=n( bd)/n(d) w ith n(bd)=1 0 and n(d )=68; and  (2) P(b | d)=p(b d)/p(d)=n( bd)/n(d) w ith
n(bd)=16 4.9 - 10=1 54.9 and  n(d)=294 5.0-68=2 877.0. As d iscussed b efore, the w eight W + can be
regarded as independ ent of the prior probability. For this ex ample, approximately the  same value of W + is
obtained when (1) the calculation is based on the subarea (=1765.8 km') with known geochemistry; and
(2) the prior probability within the area with known geochemistry is equal to that for the total study area
(=2945.0 km 2) . The seco nd cond ition implies tha t there wou ld be abou t 41 depos its within the  area with
known data. 






















Laura D Kemp




In reality, this sub area conta ins only 24  gold occurre nces. A revised  weight base d on the su barea only
would amount to 1.5444 which is greater than W+=1.0047, because the subarea contains a larger
proportion (=1012 4) of the deposits. The lesse r weight (W+=1.0047) was used in Figure 7 and now will be
employ ed for e stimating F [pb(d)]. 

For example, the modified prior probability p(d), which is based on all patterns except geochemical
signature, will be set equal to 0.05 and 0.10 within the area without definable lake drainage basins. The
log odds of these values are -2.94 44 and -2.1972 , respectively. Addition of W + and W - provides the
required e stimates of p(d  | b)and p(d | b). Fo r  p(d)=0.05 , these cond itional prob abilities are eq ual to
0.1257 and 0.0453, respectively. For p(b) which also is needed to determine F1 the ratio of favorable area
(=164 .9 km2) to know n area (= 1765.8 km2) can be used. This gives p(b)=0.0934 and p(b)=1-p(b)=0.9066.
Consequen tly, F1 (0.05)=0 .024. By  the same me thod, it follow s that F1 (0.10)=0.042. Previously, it was
pointed out that if a unit cell in the Goldenville Formation with unknown geochemical signature is in the
proximity of all linear features exce pt granite contact, then its posterior proba bility is 0.070 with standard
deviation equal to 0.028. Addition of the uncertainty because of the missing pattern results in the larger
standard deviation of 0.042 . 

For both re vised prior pro babilities p(d )(=0.05 an d 0.10), the  standard d eviation exp ressing unce rtainty is
the result of missing information is about on e-half of p(d), or F1[p(d)].0.5 p(d). This indicates that
outside the lake drainage basins where geochemical information is not available, the posterior probabilities
on the final map (Fig. 5) are less precise than would follow from the uncertainties associated with the prior
probability  and the w eights (Table  2). It is convenien t to express u ncertainty d ue to ignoran ce by a single
statistical param eter (standa rd deviation a , in this section ). It should be kep t in mind, how ever, that this
parameter is estimated from a discrete probability distribution approximating an unknown continuous
frequency distribution. 

TEST FOR GOODNESS-OF-FIT 

As pointed out in the Introduction, the final posterior probability map (Fig. 7) provides expected
frequencies that can be compared to observed frequencies for the known occurrences. Suppose that p,
represents the posterior prob ability after classification. For example, p , may be set e qual to the m idpoints
of the classe s of probab ilities used for c onstructing th e map on w hich Figure 7  is based. Sup pose that, in
total, there are  n deposits (n =68 in Fig. 7).  For each p i, the expec ted frequency amou nts to 

where Ai is the joint area of all polygons with posterior probability pi. The corresponding observed
frequency foi is obtained by counting how many deposits actually occur in the polygons with posterior
probability pi. Table 5 shows  that expected and ob served frequencies are  nearly equal to one another for
the pattern of Figure 7. It is possible to apply the chi-square test with 

The num ber of degree s of freedom  for the corre sponding th eoretical P2(<) is not kno wn. Set ting < equal
to number of classes -1 would give P22 0.05(5)=11.1 for level of significance "=0.05. The estimated
value P22 (=9.8) is less than 11.1 suggesting a good fit of the mo del. 
In this type of application, the theoretical frequencies were determined by assuming conditional
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independ ence of all p atterns. Th e test for goodn ess-of-fit use d in this sectio n would  suggest that this
hypothesis is approximately satisfied. Care has to be taken, however, in interpreting these results, because
an upper bound for the number of degrees of freedom (<) was used. Comparison of observed and
expected frequencies in Table 5 suggests that observed values tend to exceed expected values in the upper
part of the table where pi is relatively large an d that the rever se holds tha t in the lowe r part of Tab le 5. This
might indicate a minor violation of the assumption 

Table 5. Comparison of observed and theoretical frequencies for final integrated pattern of Figure 7. 

Class No. Classes of posterior

probabilities

Observed frequency

(O)

Expected frequency

(E)

(O-E)2

    E

1 0.171-0.235 4 1.1

2 0.141-0.171 3 7 4.4 5.5 0.474

3 0.101-0.190 1 2.7

4 0.082-0.100 1 2 4.3 7.0 3.571

5 0.063-0.081 17 23.9 1.992

6 0.032-0.062 23 16.7 2.377

7 0.022-0.031 5 3.3 0.875

8 0.000-0.021 14 11.6 0.497

Sum = 9.786

of conditional independence. If two or more patterns are conditionally dependent with positive "partial
association" (cf. Bishop, F ienberg, and Holland , 1975, p. 32), the expected frequencies would exceed the
observed frequencies when p, is relatively large, whereas they would be smaller when pi is small. 

CONCLUDING REMARKS 

The application of statistical pattern integration to gold exploration in Nova Scotia was performed using
SPANS-A quadtree-b ased GIS. SPANS runs on IBM  PC compatible un der DOS. The  work described here
was carried out on an 80386 machine with 70 mb hard drive. SPANS accepts a variety of inputs of vector
and raster d ata and pe rmits the user to  move readily  in and out o f DOS, so th at other DO S compatible
software can be ex ecuted on mutually sh ared data files. 

This paper is concerned primarily with three problems: (1) Construction of optimum binary patterns for
linear features in order to represent the relationship between these features and occurrence of mineral
deposits; (2) Statistical integration of patterns for linear features and polygon patterns for areal features
representing geochemistry and rock types; and (3) Development of a measure of uncertainty which is the
result of missing information. 

In order to resolve the first problem (1), a sequence of increasingly wide corridors around the linear
features was constructed using SPANS. The choice of optimum width was made on the basis of the
contrast C  which me asures cor relation betw een a bina ry pattern an d a point pa ttern. An asy mptotic
formula was used to estimate. the standard deviation of C. Statistical pattern integration (2) was carried out
by the addition of weights W+ or W - representin g presence o r absence  of features. T he addition  of weights
is based on the assumption of conditional independence of the map patterns with respect to the mineral



deposits. This assumption was tested by comparing the posterior probabilities shown on the final
integrated map pattern with ob served frequencies of gold dep osits. Uncertainty resulting from one  or more
missing patterns (3) was evaluated by considering that no weights for presence of absence of a feature can
be added if it is unknown. A measure of uncertainty was based on differences between posterior
probabilities  computed  without the  feature, and  posterior pro babilities com puted usin g the possible
outcomes for the feature if its presence or absence would be known. Contrary to the propagation of
uncertainty  associated  with the w eights which  increases w hen more p atterns are ad ded, the un certainty
resulting from missing information decrease s when patterns are a dded. 
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