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ABSTRACT

The method of statistical pattern integration used in this paper consists of reducing each set of mineral
deposit indicator features on a map to a pattem of relatively few discrete states. In its simplest form the
pattern for a feature is binary representing its presence or absence within a small unit cell; for example,
with area of 1 km? on a 1:250,000 map. The feature of interest need not oc cur within the unit cell; its
"presence" may indicate that the unit cell occurs within a given distance from a linear or curvilinear feature
on a geoscience map. By using Bayes’ rule, two probabilities can be computed that the unit cell contains a
deposit. The log odds of the unit cell's posterior probability is obtained by adding weights W' or W~ for
presence or absence of the feature to the log odds of the prior probability. If a binary pattern is positively
correlated with deposits, W+ is positive and the contrast C=W'-W™ provides a measure of the strength of
this correlation. Weights for patterns with more than two states also can be computed and special
consideration can be given to unknown data. Addition of weights from several patterns results in an
integrated pattern of posterior probabilities. This final map subdivides the study region into areas of unit
cells with different probabilities of containing a mineral deposit. In this paper, statistical pattern
integration is applied to occurrence of gold mineralization in Meguma T errane, eastern mainland Nova
Scotia, Canada.

INTRODUCTION
Geoscience maps of different types are to be integrated for target selection in mineral exploration. The
geologist stacks these maps and looks for combinations of indicators favorable for occurrence of deposits
of different types. The calculations required for mathematical analysis of digitized patterns for points,
lines, and areas have been greatly aided by the development o f microcom puter based geographic
information systems for the treatment o f map data (B onham-C arter, Agterberg, and Wright, 1988). This
has led us to develop further anew method for statistical pattern inte- gration simulating the practice of
exploration geologists to combine maps for deline- ating favorable areas. This method was proposed
initially by Agterberg (in press) for combining geophysical survey data with prior probabilities of
occurrence of massive sulfide deposits in the Abitibi area of the Canadian Shield originally obtained in
1971. The prior probability for a massive sulfide deposit being in a small unit cell was assumed to be
constant within alarger cell. The frequency of massive sulfide deposits had been estimated by regression
analysis from lithological and other variables systematically coded for such larger cells. Other geoscience
data for the same areca (Bouguer anomalies, acromagnetic anomalies, and boundaries between tertiary
drainage basins) had been quantified later as patterns of two or more mutually exclusive states by Assad
and Favini (1980). The patterns for proximity to acromagnetic anomalies and bouinlaries between
drainage basins were binary, needing only two colors (black and white) for representation. It was possible
to compute weights W,” and W, representing the states of presence and absence in the unit cell for each
binary pattern i.

In Assad and Favini (1980), the pattern for the Bouguer anomaly had five distinct states with different
colors. In Agterberg (in press), a weight W, was computed for each color j of this pattern with more than
two states. Atany point within the study area, the weights for the geophysical variables were added to the



log odds of the prior probability. This gave the log odds of the posterior probability. Because the patterns
combined with one another all consisted of polygons, the final product was also polygonal with different
colors for classes defined for the posterior probability per unit cell. The addition of weights W™ or W™ is
permitted only if the patterns being integrated are conditionally independent of occurrence of deposits. In
the Abitibi study it was shown that this condition is satisfied approximately for the geophysical variables.
In this paper, the method will be applied to gold deposits in Me guma Terrane, Nova Scotia.

An advantage ofthe statistical pattern integration method with respect to most existing methods in the
field of regional resource evaluation (e.g., logistic regression) is that a pattern need be available only for
parts of the study region. However, if one or more patterns are missing ata given place, the estimated
posterior probability has less certainty than those based on more or all pattems. This type of uncertainty,
the result of one or more missing patterns, will be studied later in the paper.

Finally, special attention should be given to verification of the theoretical assumption of conditional
independence. The simple addition of weights for different features is permitted only if this assumption is
satisfied. In general, the possibility of occur rence of conditional dependence increases with an increasing
number of patterns. Failure of the method in this respect would lead to discrepancies between frequencies
as predicted by the posterior probability map and the corresponding observed frequencies. If the
assumption of conditional independence is not satisfied, the theoretical frequencies would exceed the
observed frequencies in the most favorable parts of the region. At the end of the paper, we provide a
statistical test for comparing the theoretical and observed frequencies with one another. First, the method
of statistical pattern integration will be explained by using a simple artificial example.

GSC
Figure 1. Artificial example to illustrate concept of combining two binary pat- terns related to
occurrence of mineral deposits; (A) outcrop pattern of rock type, lineaments, and mineral deposits;
(B) rock type and deposits dilatated to unit cells; (C) lineaments dilatated to corridors; (D) super-
position of three patterns.

Figure 1 illustrates the concept of combining two binary patterns for which it may be assumed that they
are related to occurrence of mineral deposits of a given type. Figure 1A shows locations of six deposits,
the outcrop pattern of a rock type (B) with which several of the deposits may be associated (see Fig. 1B),
and two lineaments which have been dilated in Figure 1 C to provide corridors (C). Within the corridors
the likelihood of locating dep osits may be greater than elsewhere in the study region. Points situated both
on the rock type and within the lineament corridors may have the largest probability of containing dep osits
(see Fig. 1D). In Figures 1B to 1D, the deposits are surrounded by a small unit area. This allows us to
estimate the unconditional probability p(d) that a unit area contains one deposit if it is located randomly



within the study area, and the conditional probabilities p(d |b), p(d | ¢), and p(d | be) for occurrences on
rock type, corridors and overlap of rock type and corridors, respectively. These probabilities are estimated
by counting how many deposits occur within the areas occupied by the polygons of their patterns. The
relationships between the two patterns B and C, and the deposits, D, can be represented by Venn diagrams
as shown schematically in Figure 2.

GSC
Figure 2. Venn diagrams corresponding to areas of binary patterns in Figure 1; (A) is for Figure 1 B; (B) is for
Figure 1 C; (C) is for Figure 1 D.

METHOD OF STATISTICALPATTERN INTEGRATION

For the rock type (B) and the corridors (C), the relative areas assigned to the sets and their overlap (BC) in
the Venn diagrams are equal to the corresponding relative areas in the study region. The set for deposits
(D) is shown as a broken line in Figure 2 to indicate that its relative area depends on size of the unit cell.
In Figure 2C, D is divided into four subsets which can be written as BCD, BCD, BCD, and BCD where
each bar indicates complement or "absence" of B or C. The relative areas of the subsets is equal to the
relative proportions of total number of deposits belonging to the subsets. Suppose that relative area is
written as Mes (for measure). Then B and C are conditionally independent of D if

Mes (BCD) Mes(BD)  Mes(CD 1

)
= =p(bld) X p(d
MesD) . MesD) . Mes(D) p(bld) X p(dd)

plbdd) =

This is equivalent to assuming either

Mes(BCD) _ MestBO) _ pld) ., MesBCD) _ MesCD) _ pdd) (2)
= = r = = =
Mes(CD) _ MesD)  p@ % Mes(BD)  MestD)  p(d)

p(bled)=

The latter two expressions can be readily visualized by comparing Figure 2A to Figure 2C and Figure 2B
to Figure 2C, respectively. Obviously, B and C are notnecessarily conditionally independent of D.
However, this assumption is consid erably weaker than assuming that two patterns are statistically
independent. For example, if B were independent of C, we would have exactly:

p(be) =Mes(BC) =Mes(B) X Mes(C) = p(b) X p(c) (3)

In our type of application, Mes(B C) is greater than Mes(B) x Mes(C) because both B and C are positively
correlated with D.



The relationship between B, C, and D can be expressed by the following (2x2x2) table of probabilities:

D=d D=d

c ¢ C B ¢
b p(bed)  p(bed) b p(bed)  p(bed)
b p(bed)  p(béd) b p(bed)  p(béd)

Here B, C, and D are regarded as random variables which are either present or absent in a unit cell.
Absence is indicated by a bar. The eight probabilities in this table add up to one. If the assumption of
conditional independence of B and C holds true, the eight probabilities in the table also are mutually
related by:

p(bed) = p(bld) p(c|d) p(d) and

. - - - (4)
p(bed) = p(b|d) plcld) p(d)
This result follows from combining the first part of E quation (2) with the identities:
p(bed) = p(bled) pleld) p(d) and
p(bed) = p(bled) plc|d) p(d). (5)

Equation (4) implies that all eight probabilities in the table can be determined from only five individual
probabilities or functions of probabilities. In our approach we

will use for these five constants, the prior probability p(d) and the weights W,", W, W_"~and W defined
as:

W/ p(bld)}; Wy~ =loge { p(b|d) / p(b|d)};
We* =loge {plc|d) / plc|d)}; We=loge {p(&|d) / p(é

d)}. (6)

Weights of evidence W™ and W~ were previously used by Spiegelhalter (1986).

Two binary patterns, B and C, give four posterior probabilities for D=d. These are

p(d1be), p(d 1be), p(d Ibe) and p(d1be). 14 is convenient to work with odds (O) instead of probabilities
with O=p/(I-p) and p=0/(1+0O). Then:

loge O(d|be) =Wh* +W.* +loge O(d),
loge O(d|be) = W™+ W™ +loge O(d),

loge O(d|bé) =Wp ™ + W, +loge O(d), and
loge O(d[bé) =Wy~ + W™+ loge O(d),



This is the extension of Bayes'rule which holds true only if B and C are conditionally independent with
p(be|d;) = p(bldi) X plc|di) (8)

with di=d (for i=1) or d,=d (for i=0).

Previous applications of the assumption of conditional independence in mineral exploration include those
by Duda and others (1977) and Singer and Kouda (1988). Even if this assumption is not satisfied, we
always have:

loge O(d|b) = Wy * + loge O(d) ©)

and equivalent expressions for O(d | b), O(d | ¢), and O(d | ¢). The latter are formulations of Bayes' rule
which has had many previous geological applications (cf. Harbaugh, Doveton, and Davis, 1977).
Extensions of Equation (7) to more than two patterns are readily made. For example, if A is conditionally
independent of B and C, then:

loge O(d|abe) =W, " + Wp* + W, * +loge O(d) (10)

with seven equivalent expressions.

Part of the usefulness of this approach for mineral exploration results from the fact that it can be assumed
that weights such as W+ are independent of the prior probability p(d). For example, if there would be as
many undiscovered deposits in the region as there are known deposits, then the prior probability p(d)
becomes twice as large. However, weights such as W,+ =loge p(b | d)/p(b | d) remain the same even if p(d)
is changed provided that the proportion of new deposits associated with B=b would not change during
exploration in future.

APPLICATION TO GOLD DEPOSITS IN MEGUMA TERRANE

Wright, Bonham-Carter, and Rogers, (1988) have used regression analysis to determine the multielement
lake-sediment geochemical signature that best predicts the catchment basins containing gold occurrences
in Meguma Terrane, eastern mainland Nova Scotia (see Fig. 3). Their geochemical signature was reduced
to a ternary pattern (Fig. 4) for this study. Bonham-Carter and others (1988) have coregistered and
analyzed a variety of regional geoscience data sets for this same study area using a geographic information
system. A number of these data sets also are used in this paper.

Bonham-Carter and others (1988) have pointed out that the mechanism of gold mineralization in the study
area is not well understood. Various authors have proposed different genetic models, emphasizing
stratigraphic control, structural control, or importance of the intrusive granites as a source of mineral-rich
hydrothermal fluids. Different processes have played a role in the formation of some or all of the gold
deposits. By the method given in this paper, the spatial relationships to gold mineralization of patterns
based on different genetic models can be compared and integrated with one another.
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Figure 3. Location of study area with gold deposits in Meguma
Terrane, eastern mainland Nova Scotia.



Beochemical Signature for Au

less favourable basins
%) wmore favourable basins

no data

20 km
Weight for feature present w+ = 1.0047
Weight for feature absent w- = -0.1037

Figure 4. Ternary pattern for geochemical signature (binary pattern for presence or
absence of favorable geochemistry plus binary pattern unknown).

The patterns to be combined with one another are: (1) Drainage basins classified according to favorability
index derived from lake sediment geochemistry (Fig. 4); (2) Bedrock geology (see Fig. 3); (3) Proximity
to axial traces of Acadian anticlines (see Fig. 5); (4) Proximity to NW -trending lineaments; (5) Proximity
to Devonian granites (see Fig. 6); and (6) Proximity (within the Goldenville Formation) to the contact
between Goldenville and Halifax Formations. The weights estimated for these six patterns are shown in
Table 1. The final map (Fig. 7) obtained by adding the computed weights to the log prior odds delineates
subareas where most or all favorable conditions exist and can be used in gold exploration.

Four of the six patterns integrated with one another are for proximity to linear or curvilinear features.
Binary patterns (e.g., Figs. 5 and 6) were selected in each of these situations after studying how size of
neighborhood influences the contrast C=W" - W™ which provides a measure of the strength of correlation
between a point
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Figure 5. Binary pattern for proximity to axial traces of Acadian anticlines.
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Figure 6. Binary pattern for proximity to Devonian granite contact within Golden-
ville Formation.



Table 1. Weights for modeling posterior probability of a gold deposit occuring in a 1 km? area.

Map Pattern WA W
Geochemical Signature 1.0047 -0.1037
Anticline Axes 0.5452 -0.7735
N.W. Lineaments -0.0185 0.00062
Granite Contact 0.3150 -0.0562
Goldenville-Halifax Contact 0.3682 -0.2685

Bedrock Geology*

Halifax Formation -1.2406
Goldenville Formation 0.3085
Granite -1.7360

* A ternary pattern where units are mutually exclusive, and weights W™ for absence are notused.
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Figure 7. Final map of posterior probabilities vtsing all weights shown in Table 1.



pattern and a binary pattern. The expected value of C is zero if the deposits are randomly distributed with
respect to the pattern. The properties of C will be studied later in this paper. The bedrock geology pattern
(see Fig. 3) has three states (Goldenville Formation, Halifax Formation, and Devonian granite) and Wj+
values were computed for each of these states. When the feature is unknown in parts of the study region,
no weight is added or subtracted for the unit cells. The feature then has a ternary pattern with discrete
states for presence, absence and unknown, respectively. The geochemical favorability index for lake
drainage basins was quantified as a ter- nary pattern (see Figure 4) with W' for most favorable signature
basins, W~ for less favorable basins, and zero weight (W°=0) for parts of the region without lake draina ge

basins.

Weights for presences or absences of features obtained from different map patterns can be added if the
theoretical assumption of conditional independence is satisfied. Although it may not be possible to verify
this assumption for all pairs of patterns combined with one another, statistical tests can be used to compare
theoretical frequencies of deposits with their corresponding observed frequencies for subareas with the

same posterior probabilities on the integrated pattern.

PRACTICAL EXAMPLE OF ESTIMATION OF WEIGHTS

The weights for individual patterns in Table 1 used to obtain the integrated pattern of Figure 7 were
obtained from the data which are shown in Table 2. The widths of the corridors for linear features were
selected by studying contrasts for different widths as will be explained in the next section.

Table 2 Data used to compute weights W and W™ of Table 1 and their standard deviations s(W ™) and

s(W)
Map Pattern Corridor Area Gold
width (in km?) occ. W+ s(W+) W- s(W-)

Geochemical 164.9 10 1.0047 0.3263 -0.1037 0.13278
Signature

Anitcline Axes 2.5 km 1276 .4 .50 0.5452 0.1443 -0.7735 0.2370
N.W. Lineaments 1.0 km 749.7 17 -0.0185 0.2453 0.0062 0.1417
Granite Contact 1.0 km 3825.5 12 0.3150 0.2932 -0.0563 0.1351
Goldenville/ 2.0 km 1029 4 34 0.3682 0.1744 -0.2685 0.1730
Halifax

Halifax Formation 441.9 3 -1.2406 0.5793 0.1204 0.1257
Goldenville 2020.9 63 0.3085 0.1280 -1.4690 0.4484
Formation

Devonian Granite 482.2 2 -1.7360 0.7086 0.1528 0.1248

An example of calculation of the positive weights W and the negative weights of one of the features W™ is
as follows: Fifty gold occurrences are situated on the corridors of the anticline axes. The combined area of
these corridors is 1276.4 km?. The total study area contains n(d)=68 gold occurrences and measures
2945.0 km?. The total number of unit cells can be set equal to n=2945. It follows that n(i)= n-n(d)=2877.
Our calculations may he based on frequencies (= pxn) instead of on probabilities p. Then:

log

n(bd)

¢ nld)

/

n(bd)

n(d)

i’ug

e

n('gd)

/
/

v/n(gg)
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From n(bd) = 50 and -F’I[/bﬂ?,;' =18, it follows that #1(ba) = 1226 and #H(ba) =1651. Conse quently,

W o 50 (1226
" 8. G5 [ agrr 000

18 /1651

W™ =log — / ——=-07738

/
¢ 68 / 2877

The weights reported in Table 2 differ slightly from these numbers, because they were based on slightly
more precise estimates of areas.

1 1
R n(bd) 71(59) ‘

SW)= —— + ———

n(b d) n(bd) (12)

Table 2 also shows estimates of standard deviations of W and W". These were obtained from the
variances:

These formulae are consistent with the asymptotic expression for the contrast to the discussed in the next
section. Spiegelhalter and Knill-Jones (1984) have used similar formula to obtain standard errors of the
weights. The only difference between their formulae and ours is that Spiegelhalter and Knill-Jones (1984)
applied a correction based on the theory of binary data analysis to help remove bias from their estimated
weights as well as from the corresponding variances.

Eight of the sixteen weights in Table 2 are more than twice as large, in absolute value, as their standard
deviation. These eight weights probably are different from zero, because the 95 percent confidence
interval for hypothetical zero weight is ap- proximately equal to + 2s.

We have used asymptotic maximum likelihood expressions (cf. Bishop, Fienberg, and Holland, 1975,
chapter 14) for s. Such expressions are valid only if a number of conditions are satisfied including the
condition that the probabilities in the (2x2) table are neither large (= close to one) nor small (= close to
zero). The latter condition may have been violated during estimation of the relatively large standard
deviations of negative weights for rock types in the lower part of Table 2, because these are based on
relatively few deposits. For example, only two gold occurrences on Devonian granite contribute 0.5 to the
variance of their weight (= -1.7360), and therefore, account for most of the value of s(W+) = 0.7086
(bottom line of Table 2) which is probably too large.

The standard deviation of a posterior probability can he estimated as follows. The variance s*(p) of the
prior probability p satisfies approximately p/n. For p = 68/2945 = 0.0231, this yields the standard
deviation s(p) = 0.0028. The corresponding standard deviation of log, (p/(1-p)) = -3.7450 is approximately
equal to s/p = 0.1213. This follows from the approximate identity for any variable x with mean x:

s(log ,x) d(log x)
olod o, 5 50 0y pila P

(13)



Suppose that a unit cell has the following features: Its geochemical signature is unknown; it occurs in the
Goldenville Formation notnear a granite contact, and in the proximities of an anticline axis, NW
lineament, and Goldenville/Halifax contact. Then the log posterior odds is -2.598 as can be seen when the
appropriate weights are added. The variance of the log posterior odds is derived by adding variances of
weights to the variance of the log prior odds. It follows that the standard deviation of the log posterior
odds amounts to 0.40 1. The posterior probability of the unit cell containing a deposit becomes 0.069 with
approximate standard deviation equal to 0.069x0.401 = 0.028. In this way, a standard deviation can be
estimated for each of the posterior probabilities on a final integrated pattern. However, it will be shown
later thatif one or more patterns are missing, the standard deviation of the posterior probability should be
increased due to the lack of knowledge. Because no information on geochemical signature is available for
the unit cell in preceding examp le, the final standard deviation becomes 0.042 instead of 0.028 (see later).
Although this final value (=0.042) is greater than the standard deviation (=0.028) computed from the
uncertainties associated with the prior probability and the weights of Table 2, it is less than the standard
deviation (=0.087) of the posterior probability (=0.169) arising when the unit cell considered for example
in this section would have favorable geochemical signature.

CORRELATION BETWEEN PATTERN AND DEPOSITS

The contrast C,=W,” -W, for a pattern B provides a convenient measure of the strength of correlation
between B and the pattern of deposits. The (2x2) table of probabilities with marginal totals for B and D is:

d d
b p(bd) p(bd) p(b)
b p(bd) p(bd) p(b)
p(d) p(d) 1.00

If the deposits are randomly distributed within a study region, without preference for b or b, this table
becomes

d d
b p(b) X p(d) p(b) X p(d)
b p(b) X p(d) p(b) X p(d)

By using the previous definitions of W, and W, it then is readily shown that W,"-W; and
C=W," - W, =0.

Table 3 for proximity of gold occurrences to anticline axes in Meguma Terrane, Nova Scotia, shows the
contrast C(x) as a function of distance x by which these linear features were dilated (in both directions) to
define the binary pattern previously shown as Figure 5. Thus x is equal to one- half the width of the
corridors. Inspection of C(x) as a function of x provides a useful tool for deciding on a good value of x. It
should be kept in mind, that C(x) will be less precise for smaller values of x. This is because the number
of deposits n(bd) from which p(bd) is estimated then may be small and subject to considerable
uncertainty. If, as before, total number of unit cells is written as n, we have p(bd)=n(bd)In with equivalent

expressions for the other elements of the (2x2) table.

Table 3. Weights and contrast for anticline binary patterns as function of one-half- width of corridor. Total
area sampled = 2945 km?; total number of gold occurrences = 68; * denotes maximum contrast.



CORRIDOR | CORRIDOR | GODL OCC.
HALF- AREA (in ON CONTRAST STANDARD
WIDTH (in km?) CORRIDOR w* ' C=W'-wW DEV. OF C
km)
0.25 257 16 1.033 -0.181 1.213 0.294
0.50 614 31 0.811 -0.382 1.193 0.248
0.75 809 37 0.707 -0.473 1.180 0.247
1.00 995 43 0.648 -0.599 1.246 0.255
0.25 1276 50 0.545 -0.774 1.319* 0.278
0.50 1488 51 0.408 -0.694 1.101 0.283
1.75 1641 54 0.364 -0.778 1.142 0.302
2.00 1838 57 0.303 -0.857 1.160 0.332
2.25 2007 59 0.248 -0.892 1.140 0.360
2.50 2128 60 0.205 -0.872 1.077 0.379
2.75 2226 61 0.176 -0.878 1.053 0.401
3.00 2341 61 0.124 -0.701 0.824 0.402

Writing o = ¢°, the following asymptotic result for large n (see Bishop, Fienberg, and Holland, 1975, p.
377) can be used:

2 a’ [ 1 RS T }

a = = =
pbd)  p(bd) plbd p(bd) (14)

If & m(&) is small compared to @, it follows from Equation (13) that the standard deviation of C is

approximately equal to

A 1 1 1 1,
om(C)z + + 15)

+ - — —
nbd) nbd) n(bd) n(bd)

In the last column of Table 3, it is shown how this asymptotic standard deviation initially decreases as a
function of distance. O nce the one-half-width exceeds 0.75 km, the standard deviation continually
increases. An approximate 95 percent confidence interval for C is provided by £26 o(C). From this it may
be concluded that the values of C shown in Table 3 are significantly greater than zero. Table 4 provides
another example of C(x) as a function of x. Both positive and negative values of C occur in Table 4 which
is for proximity to Devonian granites. The standard deviation of C now continues to decrease for wider
corridors and it is likely that none of the values of C are significantly different from zero. The maximum
value of C corresponds to a proximity of 1 km and this binary pattem was selected for use (cf., Tables 1

Table 4. Weights and contrast for granite contact corridors as function of corridor width. Total area
samples = 294 5 km?; total number of gold occurrences = 68; * denotes maximum contrast.



CORRIDOR | CORRIDOR | GOLD OCC.
WIDTH (in AREA ON CONTRAST | STANDARD
km) (in km) CORRIDOR w* W~ C=W'-w" DEV. OF C

0.25 | 121 3 0.074 -0.003 0.077 0.598
0.50 247 6 0.052 -0.005 0.056 0.433
0.75 319 7 -0.051 0.006 -0.057 0.404
1.00 383 12 0.315 -0.056 0.371% 0.323
1.25 478 13 0.167 -0.036 0.203 0.313
1.50 528 13 0.065 -0.015 0.080 0.312
1.75 582 14 0.043 -0.012 0.054 0.304
2.00 670 14 -0.102 0.028 -0.130 0.303
2.25 715 14 -0.168 0.049 -0.217 0.303
2.50 756 14 -0.226 0.068 -0.299 0.303
2.75 799 15 -0.211 0.069 -0.280 0.293
3.00 865 17 -0.170 0.061 -0.226 0.283

and 2). The corresponding weights for proximity to Devonian granite (cf. Fig. 6) are relatively small and
had relatively little effect on the final map (Fig. 7).

In mathematical statistics, various functions of & have been proposed to express correlation between two
binary variables. Yule's "measure of association" Q=(®-1)/ (¢¢+1) (see Bishop, Fienberg, and Holland,
1976, p. 3 78) is comparable to the ordinary product-moment correlation coefficient for two continuous
variables in that it is confined to the interval [-1, 1] with E(Q)=0 for uncorrelated binary patterns. It is
readily shown that

dQ 2
— =9/(a+1)°
5 2 (Q 1 ) (1 B)

which is always positive. Consequently, {!(x) as a function of x would reach its maximum at the same
value of x as C(x) (cf. Table 3). It may be concluded that the contrast C=W+ -W- provides a convenient
measure of strength of correlation between the patterns B and D.

UNCERTAINTY BECAUSE OF ONE OR MORE MISSING PATTERNS

In the Introduction, it was pointed out that posterior probabilities do not all have the same precision if
some of them are based on fewer patterns than others. This situation arises when data for a pattern are
missing in parts of the study region. For example, the geochemical signature based on lake drainage basins
is only available for parts of our study area (Meguma Terrane, Nova Scotia). Spiegelhalter (1986, p. 37)
has proposed to regard any prior probability p(d) as the expectation of the possible final probabilities

p(d | x) that may be obtained on observing data x



pld)=E, (p(d|X)]= J p(dlx)p(x)dx am

In general,
For the relationship between B, C, and D:

p(d= 2 p(dlb,c)p(b.c )=p(dlbelp(b)+ p(dlb ¢ )p(b ¢)+p(dl b p( b )+ p(d] bep( be)
y ‘ (18)

The corresponding variance is:

2
2 - N —
a,lp(d)] _; {p(d}blc}) p(d)} p(chJ) (19)

If only B is unknown, the information on C can be added to the prior probability in order to obtain
updated prior probabilities Pb(d) with variance:

- 2 [ _ 2
oﬁf[pb('cf)};: {p(d’w'b) «mp(d)} pb)+ {p((ﬁ b ‘)ﬂ-p(d)} p(b)

(20)
follows from:
> pld)b ¢ )p(b.c)=p(d|b)p(b)
P L g L J l l (21)

]

The expressions for the variances G1° (one pattern missing) and 02 (two patterns ,missing) are
independent of any other patterns for which data were available and ised to change the prior probability.
Extensions to situations with three or more missing pattems are readily made. In our example, only one
pattern is incomplete: geochemical signature for gold deposits in Meguma Terrane. The ternary pattern
representing geochemical signature (Fig. 4) shows those parts of the area where this feature could not be
determined. In these places, the probability p,(d) on the final map (Fig. 7) has partial uncertainty that can
be expressed by the standard deviation ¢r 1[P,(d)]. This uncertainty is partial because it becomes zero in
places where all patterns including the geochemical signature are available, although the posterior
probabilities in these places have their own uncertainties which can be estimated by using the standard
deviations of the weights (see before). The latter type of uncertainty of the posterior probability increases
when the pattern for geochemical signature is added. Of course, the uncertainty because of a missing
pattern decreases when information on the pattern is added.

The weights W'=1.0047 and W=-0.1037 for the geochemical signature (cf., Table 1) were determined
from likelihood ratios for the entire area. For example, W *=log, p(b | d)/p(b | d)=1.0047 was based on (1)
p(b|1 d)=p(bd)/p(d)=n(bd)/n(d) with n(bd)=10 and n(d)=68; and (2) P(b | d)=p(bd)/p(d)=n(bd)/n(d) with
n(bd)=164.9 - 10=154.9 and n(d)=2945.0-68=2877.0. As discussed before, the weight W* can be
regarded as independent of the prior probability. For this example, approximately the same value of W is
obtained when (1) the calculation is based on the subarea (=1765.8 km'") with known geochemistry; and
(2) the prior probability within the area with known geochemistry is equal to that for the total study area
(=2945.0 km?) . The second condition implies that there would be about 41 deposits within the area with
known data.
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In reality, this subarea contains only 24 gold occurrences. A revised weight based on the subarea only
would amount to 1.5444 which is greater than W'=1.0047, because the subarea contains a larger
proportion (=10124) of the deposits. The lesser weight (W'=1.0047) was used in Figure 7 and now will be
employ ed for estimating O [p,(d)].

For example, the modified prior probability p(d), which is based on all patterns except geochemical
signature, will be set equalto 0.05 and 0.10 within the area without definable lake drainage basins. The
log odds of these values are -2.9444 and -2.1972, respectively. Addition of W' and W™ provides the
required estimates of p(d | b)and p(d | b). For p(d)=0.05, these conditional probabilities are equal to
0.1257 and 0.0453, respectively. For p(b) which also is needed to determine O1 the ratio of favorable arca
(=164.9 km?) to known area (=1765.8 km?) can be used. This gives p(b)=0.0934 and p(b)=1-p(b)=0.9066.
Consequently, 01 (0.05)=0.024. By the same method, it follows that 01 (0.10)=0.042. Previously, it was
pointed out thatif a unit cell in the Goldenville Formation with unknown geochemical signature is in the
proximity of all linear features except granite contact, then its posterior probability is 0.070 with standard
deviation equal to 0.028. Addition of the uncertainty because of the missing pattern results in the larger
standard deviation of 0.042.

For both revised prior probabilities p(d)(=0.05 and 0.10), the standard deviation expressing uncertainty is
the result of missing information is about one-half of p(d), or 01[p(d)]=0.5 p(d). This indicates that
outside the lake drainage basins where geochemical information is not available, the posterior probabilities
on the final map (Fig. 5) are less precise than would follow from the uncertainties associated with the prior
probability and the weights (Table 2). It is convenient to express uncertainty due to ignorance by a single
statistical parameter (standard deviation a, in this section). It should be kept in mind, how ever, that this
parameter is estimated from a discrete probability distribution approximating an unknown continuous
frequency distribution.

TEST FOR GOODNESS-OF-FIT

As pointed out in the Introduction, the final posterior probability map (Fig 7) provides expected
frequencies that can be compared to observed frequencies for the known occurrences. Suppose thatp,
represents the posterior probability after classification. For example, p, may be set equal to the midpoints
of the classes of probabilities used for constructing the map on which Figure 7 is based. Suppose that, in
total, there are n deposits (n=68 in Fig. 7). For each pi, the expected frequency amounts to

Aipin

f (22)

el zAipi

where A, is the jointarea of all polygons with posterior probability p,. The corresponding observed
frequency foi is obtained by counting how many deposits actually occur in the polygons with posterior
probability p,. Table 5 shows that expected and observed frequencies are nearly equal to one another for
the pattern of Figure 7. It is possible to apply the chi-square test with

§ ot
XZZ Zi_“_ =9.786

i et

(23)

The number of degrees of freedom for the corre sponding theoretical ¥*(V) is not known. Setting V equal
to number of classes -1 would give (*2 0.05(5)=11.1 for level of significance €=0.05. The estimated
value X*2 (=9.8) is less than 11.1 suggesting a good fit of the model.

In this type of application, the theoretical frequencies were determined by assuming conditional
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independence of all patterns. The test for goodness-of-fit used in this section would suggest that this
hypothesis is approximately satisfied. Care has to be taken, however, in interpreting these results, because
an upper bound for the number of degrees of freedom (V) was used. Comparison of observed and
expected frequencies in Table 5 suggests that observed values tend to exceed expected values in the upper
part of the table where p; is relatively large and that the reverse holds that in the lower part of Table 5. This
might indicate a minor violation of the assumption

Table 5. Comparison of observed and theoretical frequencies for final integrated pattern of Figure 7.

Class No. Classes of posterior | Observed frequency | Expected frequency O-EY
probabilities (O) (E) E
1 0.171-0.235 4 1.1
2 0.141-0.171 3 7 4.4 5.5 0.474
3 0.101-0.190 1 2.7
4 0.082-0.100 1 2 43 7.0 3.571
5 0.063-0.081 17 23.9 1.992
6 0.032-0.062 23 16.7 2.377
7 0.022-0.031 5 3.3 0.875
8 0.000-0.021 14 11.6 0.497
Sum = 9.786

of conditional independence. Iftwo or more pattems are conditionally dependent with positive "partial
association" (cf. Bishop, Fienberg, and Holland, 1975, p. 32), the expected frequencies would exceed the
observed frequencies when p, is relatively large, whereas they would be smaller when p; is small.

CONCLUDING REMARKS

The application of statistical pattem integration to gold exploration in Nova Scotia was performed using
SPANS-A quadtree-based GIS. SPANS runs on IBM PC compatible under DOS. The work described here
was carried out on an 80386 machine with 70 mb hard drive. SPANS accepts a variety of inputs of vector
and raster data and permits the user to move readily in and out of DOS, so that other DO S compatible
software can be executed on mutually shared data files.

This paper is concemed primarily with three problems: (1) Construction of optimum binary patterns for
linear features in order to represent the relationship between these features and occurrence of mineral
deposits; (2) Statistical integration of patterns for linear features and polygon patterns for areal features
representing geochemistry and rock types; and (3) Development of a measure of uncertainty which is the
result of missing information.

In order to resolve the first problem (1), a sequence of increasingly wide corridors around the linear
features was constructed using SPANS. The choice of optimum width was made on the basis of the
contrast C which measures correlation betw een a binary pattern and a point pattern. An asy mptotic
formula was used to estimate. the standard deviation of C. Statistical pattern integration (2) was carried out
by the addition of weights W™ or W™ representing presence or absence of features. T he addition of weights
is based on the assumption of conditional independence of the map patterns with respect to the mineral



deposits. This assumption was tested by comparing the posterior probabilities shown on the final
integrated map pattern with observed frequencies of gold dep osits. Uncertainty resulting from one or more
missing patterns (3) was evaluated by considering that no weights for presence of absence of a feature can
be added if it is unknown. A measure of uncertainty was based on differences between posterior
probabilities computed without the feature, and posterior probabilities com puted using the possible
outcomes for the feature if its presence or absence would be known. Contrary to the propagation of
uncertainty associated with the weights which increases when more patterns are ad ded, the uncertainty
resulting from missing information decreases when patterns are added.
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