From Bonham-Carter, Graeme F., Geographic Information Systems for Geoscientists,
Modelling with GIS, Chapter 9, Fuzzy Logic section with related tables and figures.

FUZZY LOGIC METHOD

In classical set theory, the membership of a set is defined as true or false, 1 or 0. Memb ership of a fuzzy set,
however, is expressed on a continuous scale from 1 (full membership)to 0 (full non-membership). Thus
individual measurements of arsenic (As)in lake sediment might be defined according to their degree of
membership in the set called "Arsenic anomaly". Very high values of As are definitely anomalous, with a fuzzy
membership of 1; very low values at or below background have a fuzzy membership of zero; between these
extremes a range of possible membership values exist. Such amembership function might be expressed
analytically as
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where x isthe As concentration value in ppm and p(X) is the fuzzy membership function. Every value of x is
associated with a value of J(x), and the ordered pairs [x, J(x)] are known collectively as a fuzzy set. The shape
of the function need not be linear, as in Equation 9-3 and shown in Figure 9-5, it can take on any analytical or
arbitrary shape appropriate to die problem at hand. Fuzzy membership functions can also be expressed as lists or
tables of numbers. Thus in the As case, the discrete representation of the fuzzy membership function shown in
Table 9-7 (for class intervals of 50 ppm), is equivalent to the analytical expression in Equation 9-3.

Now sup pose that As has been mapped, with 50 ppm class intervals, then the fuzzy mem bership function can
be treated as an attrib ute table of an arsenic map, as shown in Table 9-8.

The classes of any map can be associated with fuzzy membership values in an attribute table. The level of
measurement of the mapped variable can be categorical, ordinal or interval.

Fuzzy membership values must lie in the range (0, 1), but there are no practical constraints on the choice of
fuzzy membership values. Values are simply chosen to reflect the degree of membership of aset, based on
subjective judgment. Values need not increase or decrease mono tonically with class number, as in the case of As
above.

The presence ofthe various states or classes of a map might be expressed in terms of fuzzy memberships of
different sets, possibly storing them as several fields in the map attribute table. Thus the As values on a map
might be considered in terms of their fuzzy membership of a set'”’favou rable indica tor for gold deposits", or a
second set "suitab le for drilling water wells". The membership functions for these two sets would lo ok very
different, one reflecting the importance of As as apathfinder element for gold deposits, the other reflecting the
unde sirability of drilling a water well in rocks with elevated levels of As.

Not only can a single map have more than one fuzzy membership function, but also several different maps can
have membership values for the same proposition or hypothesis. Suppo se that the spatial objects (polygons,
pixels) on a map, are evaluated according to the proposition “favourable location for gold exploration” then any
of the maps to be used as evidence in supp ort of this proposition can he assigned fuzzy membership functions.
Table 9-5 shows a series of fuzzy membership functions for the maps used to select a landfill. Ale membership
values were chosen arbitrarily (like the index overlay scores) based on subjective judgment about the relative
imp ortance of the maps and their various states. The fuzzy membership values are in the field labelled "Fuzzy".
Table 9-6 also shows fuzzy membership functions for the mineral potential maps. Note that the fuzzy
mem berships assigned to categorical maps (such as the geological map or the zoning map in the landfill study)
do not increase or decrease monotonically with class numb er, but are assigned values in the range (0,1) that
reflect, subjectively, the importance of individual map units. Thus limestone is assigned a value of 0.1 (highly
unfavourable for a landfill), whereas a shale is assigned a very favourable value (0.9).

Note that the fuzzy memb ership values must reflect the relative importance o f each map, as well as the relative
importance of each class of a single map. The fuzzy memberships are similar to the combined effect of the class
scores and the map weigh ts of the index overlay meth od.



Table 9-6. Attribute tables for mineral potential study, showing scores for class weighting and fuzzy membership
values. Only 4 out of the 1 0 tables used in the study are shown. Tables have been assigned the same names as
their associated maps.

A. Geology (GEOL) D. Anticline distance (ANTI)
Class Score Fuzzy Legend Class Score  Fuzzy Legend
0 1 0.0 ‘outside’ 0 0 0.1 > 6 km'
1 9 0.9 ‘<0.25'
1 9 0.8 ‘Goldenville’
2 9 0.9 ‘0.25-0.5'
2 7 0.7 ‘Halifax’ 3 9 0.9 (0.5_0.75l
3 -1 0.1 ‘Granite’ 4 9 0.9 ‘0.75-1.0'
5 8 0.8 ‘1.0'1.25'
B. Lake Sediment Antimony (LSSB) 6 8 0.8 “1.25-1.5'
0 1 0.1 ‘no data’ 7 8 0.8 ‘1.5-1.75'
1 8 0.8 0.9-1.3 ppm’ 8 8 0.8 1.75-2.0
) 9 7 0.7 ‘2.0-2.25'
7 . ‘0.8-0.9'
0.8 0.8-0.9 10 7 0.7 ‘2.25-2.5'
3 6 0.6 '0.6-0.8' 11 7 0.7 2.5-2.75'
4 5 0.4 ‘0.5-0.6' 12 6 0.6 ‘2.75-3.0'
5 4 0.3 ‘0.4-0.5' 13 6 0.5 3.0-3.25
14 6 0.5 ‘3.25-3.5'
6 2 0.2 0.3-0.4 15 5 0.5 ‘3.5-3.75'
7 2 0.2 ‘0.2-0.3' 16 5 0.4 ‘3.75-4.0"
8 1 0.1 ‘<0.2' 17 4 0.4 ‘4.0-4.25'
18 4 0.4 ‘4.25-4.5'
19 3 0.3 ‘4.5-4.75'
C. Balsam Fir Gold (BIOAU) 20 3 0.3 ‘4 75-5.0'
0 0 0.0 ‘no data’ 21 2 0.3 ‘5.0-5.25'
1 9 0.9 24-136 ppb’ 22 2 0.3 ‘5.25-5.5'
23 1 0.2 ‘5.5-5.75'
2 8 0.8 ‘16-24'
24 1 0.2 ‘5.75-6.0'
3 8 0.6 ‘12-16'
4 7 0.4 ‘10-12'
5 6 0.3 ‘8-10'
6 5 0.2 7-8'
7 4 0.2 ‘6-7"
8 2 0.2 ‘3-6'
9 1 0.1 ‘<3
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FIG. 9-5. A graph showing fuzzy membership of the set of obse rvations for which "arsenic
levels are anomalous”. Fuzzy membership can, in some cases, he expressed as an analytical
function, not necessarily linear as shown here, in other cases membership is defined more

readily as a table.

Table 9-7. Fuzzy membership function for As expressed as the ordered pairs [x, M (x)/, and organized
in a table.

X H(x)
300 1
250 1
200 0.75
150 0.5
100 0.25

50 0

0 0

Table 9-8. Attribute table for a map of As, with the fuzzy membership values shown as one field.

Map Fuzzy Legend
Class Members hip Entry
1 1.00 >275 ppm
As’
2 1.00 ‘225 - 275"
3 0.75 ‘175 - 225
4 0.50 ‘125 - 175"
5 0.25 ‘75 - 125
6 0.00 ‘25 - 75'
7 0.00 ‘< 25'




Table 9-5. Atfribute tables for the 10 maps used for landfill site selection.

A. Overburden thickness (OVERTHIK) B. Permeability (PERMEAB)
Class Fuzzy Legend Class Fuzzy Legend
1 0.1 “1m” 1 0.9 “low”
2 0.3 “2m” 2 0.6 “med”
3 0.9 “3m” 3 0.2 “high”
4 0.9 “4 m” D. Geology (GEOLOGY)
5 0.9 “5m” 1 0.8 “granite”
6 0.9 “6 m” 2 0.5 “sandstone”
C. Surface slope (SLOPE) 3 0.9 “shale”
1 0.9 “low” 4 0.1 “limestone”
2 0.9 5 0.2 “conglomera
te”
3 0.7
E. Zoning map (ZONING)
4 0.5 “‘medium”
0 0.1 “city”
5 0.3
1 0.3 “‘indu strial”
6 0.1
2 0.8 “agricut A”
7 0.1
3 0.7 “agricult B”
8 0.1 “steep”

F. Distance from city limits (MUNIBUF)

G. 100-year flood zone (FLOOD)

0 0.0 “0 km”
1 0.1 “100 yr”

1 0.6 “<1 km”
2 0.9 “> 100"

2 0.8 “<2"

H. Suitability for farming (SUITAB)

3 0.9 “<3"
1 0.1 “good”

4 0.7 “<q"
2 0.4 “fair”

5 0.5 “<b"
3 0.9 “poor”

6 0.3 “<g"

I. Distance from major road (ROADBUF)

7 0.1 “<7"
1 0.6 “<1 km”

8 0.1 “<8"
2 0.9 “<2"

9 0.1 “<9"
3 0.8 “<3"

10 0.1 “<10"
4 0.7 ‘<4

11 0.1 “>=10"
5 0.5 “<g"

J. Ecologically sensitive (ECOL)

6 0.3 “<g"

1 0.1 “sensitive”
7 0.1 “<7"

2 0.9 “insensitive”

8 0.1 “<8"




Combining Fuzzy Membership Functions

Given two or more maps with fuzzy membership functions for the same set, a variety of operators can be
employed to combine the membership values together. The book by Zimmermann (1985), for example,
discusses a variety of combinationrules. An et al. (1991) discuss five operators that were found to be useful for
combining exploration datasets, namely the fuzzy AND, fuzzy OR, fuzzy algebraic product, fuzzy algebraic sum
and fuzzy gamma o perator. T hese o perators are briefly reviewed here.

Fuzzy AND

This is equivalentto a Boolean AND (logical intersection) operation on classical set values of (1,0). Itis defined
as

Hoombination = MIN(ﬂﬂvﬁﬂvﬂC‘r") (9-4)

where M, is the membership value for map A at a particular location, My, is the value for map B, and so on. Of
course, the fuzzy memberships must all be with respect to the same proposition. Suppose thatat some location
the membership value for map A is 0.75 and for map B is 0.5, then the membership for the combination using
fuzzy AND is 0.5. It can readily be seen thatthe effect of this ruleis to make the output map be controlled by
the smallest fuzzy membership value occurring at each location. Like the Boolean AND, fuzzy AND results in a
conservative estimate of set memb ership, with a tendency to produce small values. The AND operation is
appropriate where two or more pieces of evidence for a hypothesis must be present together for the hypothesis to
be true.

Fuzzy OR

On the other hand, the fuzzy OR is the like the Boolean OR (logical union) in that the output membership values
are controlled by the maximum values of any of the input maps, for any particular location. The fuzzy OR is
defined as

Hoompingzion = AN (g g e....) (9-5)

Using this operator, the combined membership value at a location (=suitability for landfill etc) is limited only by
the most suitable ofthe evidence maps. Thisis not a particularly desirable operator for the landfill case, but
might in some circumstances be reasonable for mineral potential mapping, where favourable indicators of
mineralization are rare and the presence of any positive evid ence may b e sufficient to suggest favourability.
Note that in using either the fuzzy AND or fuzzy OR, a fuzzy membership of a single piece o f evidence controls
the output value. On the other hand, the following operators combine the effects of two or more pieces of
evidence in a "blended" result, so that each data source has some effect on the output.



Fuzzy Algebraic Product

Here, the combined memb ership function is defined as

(9-6)

H
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where M, is the fuzzy membership function for the i-th map, and =1,2,... n maps are to be combined. The
combined fuzzy membership values tend to be very small with this operator, due to the effect of multiplying
several numbers less than 1. The output is always smaller than, or equal to, the smallest contributing
membership value, and is therefore "decreasive". For example, the algebraic product of(0.75,0.5) is 0.375.
Nevertheless, all the contributing membership values have an effect on the result, unlike the fuzzy AND, or
fuzzy OR operators.

Fuzzy Algebraic Sum

This operator is com plementary to the fuzzy algebraic product, being defined as

®
Heompination = 1- n (1_ :‘["ri) -7
i=ml

The result is always larger (or equal to) the largest contributing fuzzy membership value. The effect is therefore
"increasive". Two pieces of evidence that both favoura hypothesisreinforce one another and the combined
evidence is more supportive than either piece of evidence taken individually. For example, the fuzzy algebraic
sum of (0.75, 0.5) is 1-(1-0.75)*(1-0.5), which equals 0.875. The increasive effect of combining sev eral
favourable pieces of evidence is automatically limited by the maximum value of 1.0, which can neverbe
exceeded. Note that whereas the fuzzy algebraic product isan algebraic product, the fuzzy algebraic sum isnot
an algebraic summation.

Gamma Operation

This is defined in terms of the fuzzy algebraic product and the fuzzy algebraic sum by = (Fuzzy algebra i ¢ sum)

.-ucc:':w-.’-'i?dﬂﬁc:l?d = (FUZZ}? algebraic Sum)r * (9-8)

(Fuzzy algebraic product)’™

where Yis a parameter chosen in therange (0, 1), Zimmermann and Zysno (1980). When Y is 1, the combination
is the same as the fuzzyalgebraic sum; and when Y is 0, the combination equals the fuzzy algebraic product.
Judicious choice of Y produces output values that ensure a flexible compromise between the "increasive"
tendencies of the fuzzy algebraic sum and the "decreasive" effects of the fuzzy algebraic product. Forexample,
if Y= 0.7, then the combination of (0.75, 0.5) is 0.875%” *0.375"* = 0.679, aresult that lies between 0.75 and 0.5.
On the other hand, if Y=0.95, then the combination is 0.839, a mildly increasive result. If Y=0. 1, then the
combination is 0.40 8, a result that is less than the average of the 2 input function values, and is therefore
decreasive. The effect of choosing different values of Y are shown in Figure 9-6. Note that although the same
tend encies occur, the actual values of Y for which the combined membership function becomes increasive or
decreasive vary with the input membership values. An et al. (1991) used a value of Y=0.975 to combine
geophysical and geological datasets in their study of iron and base metal deposits in M anitoba, presumably
because the increasive effects of larger values best seem ed to reflect the subjective decision-making of typical
exploration geologists.
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FIG. 9-6. A graph of fuzzy membership, M., obtained by combining two fuzzy memberships, M, and U, versus Y. This shows
the effect of variations in Y for the case of combining two values, M,=0.75 and M,=0.5. When, Y=-0, the com bination equals
the fuzzy alge braic product; when Y=I, the combination equak the fuzzy algebraic sum.. When 0.8 <Y< I, the combination
is larger than the large st input mem bership value (in this case 0.75), and the effectis therefore "increasive". When 0 <y< 0.35,
the combination is smaller than the smallestinput membership value (0.5 in this case), and the effect is therefore "d ecreasive".
When 0.35<Y< 0.8, the c ombination is neither increasive nor decreasive, but lies w ithin the range of the input membership
values. The limits 0.8 and 0.35 are data dependent.

Returning to the intemal modelling procedure, with the landfill case, the following steps can used to combine
the 10 maps with the fuizzy gamma operation.

‘Pseudocode for fuzzy combination of datasets for landfill site (see Table 9-5)
‘Setvalue of Gamma

gamma = 0.95
¢ At current location, lookup fuzzy memb ership values for each input map
cl = OVERTHIK
c2 =PERMEAB
c3 =SLOPE
c4 = GEOLOGY

¢5 =FLOOD
c6 = ZONING
c¢7 =SUITAB
c¢8 = MINIBUF

¢9 = ROADBUF
cl0 = ECOLOG
‘Calculate the fuzzy algebraic product and fuzzy algebraic sum

product =cl *c2 * ¢3 *c4 *c5 *c6 * ¢7 *c8* c9 *cl0
sum=1-((1-cl)*(1-c2)*(1-c3)*(1-c4)*(1-c5)*(1-c6)*(1-c7)*(1-¢c8)-(1-c9)*
(1 -cl10)

‘Apply gamma operator

result = (sum ” gamma) * (product ” (1 - gamma))



Notice that for each of the 10 input maps, the 'FUZZY' column is the field in the corresponding map attribute
table where the fuzzy membership functions are stored, see Table 9-5.

The output map, after classification with a table of breakpoints called FUZTAB', show areasranked according
the combined fuzzy memb ership, see Figure 9-2D.

The procedure for the mineral potential case is similar, except for two features. First, the value of gamma is
specified as keyboard input allowing different values to be selected at run time. Second, the four lake sediment
maps are combined using fuzzy OR, and the two biogeoche mical maps are also combined with fuzzy OR. This
means the combined effect of the lake sediment geochemical evidence, will take on the maximum fuzzy
membership ofthe four contributing maps. An anomalous value from any one of the maps is therefore sufficient
to give this factor a large fuzzy score. The effect is the same for the biogeochemical combination. Finally, the
gamma operator isused, as before, for the final combination step. The resulting map is shown in Figure 94D.
Superficially it looks similar to the index overlay, but careful comp arison shows some important differences.

‘Pseudocode for fuzzy combination for mineral potential
‘This pro cedure is shown graphically as an inference net in Figure 9-7
‘Set gamma value

gamma = 0.95

‘At current location, get fuzzy me mbership values for each map

ml = GEOL
m2 = LSAS
m3 = LSAU
m4 = LSSB
m5 = LSOW
m6 = BIOAS
m7 = BIOAU
m8 = ANTI

m9 = GOLDHAL
ml10 =NWLINS

‘Apply fuzzy OR to lake sediment maps
‘Favourable lake sed geochem is an intermediate hypothesis

favls = MAX(m2,m3,m4,m5)
‘Favourable biogechem is an intermediate hypothesis
favbio = MIN(m6,m7)

‘Calculate fuzzy product, sum and gamma
‘Favourable location for gold dep osits is a final hypothesis

fprod = m1 * favls * favbio *m8 * m9 * m10
fsum=1-((1-ml)* (1 - favls) *(1 - favbio)*(1 - m8) * (1 - m9)*(1 - m10))
favloc = fsum » gamma * fprod ” (1 - gamma)

Comments on the Fuzzy Logic Method

In practice, it may be desirable to use a variety of different fuzzy operators in the same problem, as shown for
the mineral potential example. In particular, fuzzy AND and fuzzy OR can be more appropriate than fuzzy
gamma in some situations, but not in others. For exam ple, suppo se that two input maps represent evidence for a
proposition that requires that the evidence occurjointly. To take a slightly contrived example, consider a map of
sulphur content and a map of zinc content from lithological samples. The combination is highly suggestive
evidence for the presence of zinc sulphide (sphalerite), an important mineral in many zinc deposits. Ignoring the
obvious problems of concentration units and other factors for the sake of simplicity, we can deduce that be cause
the joint presence ofthe two elements isneeded, the importance of the evidence is limited by the lesser
abundance o f the two elements. In this case, fuzzy AND would be an appropriate comb ination operator, because
at each location the combination would be controlled by the minimum ofthe fuzzy membership values. In other
situations, fuzzy OR is more appropriate, where for example, the presence of any one of the path finder elements
in abundance might he significant evidence for the presence of a mineral deposit, even though other pathfinder
elements are not present in anomalous amounts.



Evidence maps can be combined together in a series of steps, as depicted in an inference network, Figure 9-7.
Thus instead of combining all the maps in one operation, for example with the gamm a operator, it may be more
appropriate to link together some maps with, say the fuzzy OR to support an intermediate hypothesis, other maps
with fuzzy AND to support another intermediate hypothesis, and finally to link both raw evidence and
intermediate hypotheses (now in turn being used as evidence) with a fuzzy gamma operation. Many combinations
are possible. The inference network becomes an important means of simulating the logical thought processes of
an expert. In expert system terminology, the fuzzy membership functions are the "knowledge base" and the
inference network and fuzzy combination rules are the "inference engine". Fuzzy logic is one of the tools used in
expert systems where the uncertainty ofevidence is important. Even quite complex inference networks can be
implemented in a map modelling language. Fuzzy logic has also been applied to problems of pattern recognition

in geology, see Griffiths (198 7).
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