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WEIGHTS OF EVIDENCE MODELING AND WEIGHTED
LOGISTIC REGRESSION FOR MINERAL POTENTIAL
MAPPING* 

F.P. Ag terberg, G .F. Bonham -Carter, Q . Cheng and  D.F. W right 

During the past few years, we have developed a method of weights of evidence modeling for mineral
potential mapping (cf. Agterberg, 1989; Bonham-Carter et al., 1990). In this paper, weights of evidence
modeling and logistic regression are applied to occurrences of hydrothermal vents on the ocean floor, East
Pacific Rise near 21/ N. For co mparison, lo gistic regression is a lso applied  to occurren ces of gold de posits
in Meguma Terra ne, Nova Scotia. 

The volcanic, tectonic, and hydrothermal processes along the central axis of the East Pacific Rise at 21/
N were originally studied by Ballard et al. (1981). Their maps were previously taken as the starting point
for a pilot pro ject on estima tion of the pr obability of  occurren ce of polym etallic massive su lfide depos its
on the oce an floor (Agterb erg and Fran klin, 1987). In the  earlier wor k, presence o r absence  of deposits in
relatively large square cells was related to explanatory variables quantified for small square cells (pixels)
by means of stepwise multiple regression and logistic regression. In this paper, weights of evidence
modeling and weighted logistic regression are applied to the same maps but a geographic information
system (Intera-TYDAC SPANS, 1991) was used to create polygons for combinations of maps. These
polygons can be classified taking the different classes from each map. Probabilities estimated for the
resulting "unique conditions" can be classified and displayed. The vents are correlated with only a few
patterns and it is relatively easy to interpret the weights and final probability maps in terms of the
underlying volcanic, tectonic, and hydrothermal processes. The vents are situated along the central axis of
the rise togethe r with the yo ungest voican ies. They o ccur at app roximately  the same de pth below  sea level,
tend to be associated w ith pillow flows rather than sh eet flows, and with ab sence of fissures whic h are
more prominent in olde r volcanics. 

Contrary to weights of evidence modeling, weighted logistic regression (cf. Agterberg, 1992, for
discussion  of algorithm) ca n he applie d when  the explan atory variable s are not con ditionally ind ependen t.
This metho d was pre viously app lied by Re ddy et al. (19 91) to volcan ogenic mass ive suifide dep osits in
the Snow La ke area of M anitoba.. T he assump tions unde rlying these me thods will b e evaluated in  detail
for the seafloor example. 

The gold deposits in Meguma Terrane, Nova Scotia, were previously used for weights of evidence
modeling (Bonham -Carter et al., 1988; W right, 1988; Agterberg et al., 1990; Bonh am-Carter et al., 1990).
It will be shown in this paper that similar results are obtained when weighted logistic regression is used.
The degree of fit of the different statistical mode ls is evaluated for all applications in this paper. A
difference between the two examples of application is that the number of hydrothermal vents on the
seafloor is small in comparison to the number of Nova Scotia gold deposits. For this reason, the posterior
probabilities have greater relative precision in the N ova Scotia example. 

Hydrothermal Vents on the Ocean Floor 

The maps used  for this example are show n in Plate 1 (color illustrations are grouped  together; Plates 2-5
follow  Plate 1). The volcanos on the East Pacific Rise are of two types. (1) pillow flows, and (2) sheet
flows. There are three age classes. Ballard et al. (1981 ) determ ined rel ative age b y measu ring relative
amounts o f sediments d eposited o n top of the vo leanies. Th e resulting six litho -age units are shown in
Plate la together with the occurrences of 13 hydrothermal vents. The other map patterns of Plate 1 are for



topography (depth to sea bottom, Pl. 1b), distance to contact between youngest pillow flows and youngest
sheet flows (Pl. le), and distance to fissures (Pl. 1d). The first step in weights of evidence modeling
consis ted of co nstruct ing binar y patterns wh ich are r elatively  strongly  correla ted with  the vents . Five
binary patte rns for the se afloor example are shown in P late 2. Each  pattern has  positive weigh t W+ for
presence  of a feature a nd negative w eight W - for its absence. The contrast C = W+-W - is a measure of the
strength of correlation between the vents and a binary pattern. A binary pattern can be constructed by
maximizing the contrast. For example, from Plate lb for topography it can he seen that nearly all (12 of
13) vents belong to a single 20-m topo graphic interval and this prompted the  choice of the binary pa ttern
of Plate 2b. A table of contrast versus c orridor width can be  used for deciding on the bin ary pattern

Plates

Plate 1: Patterns used for example of occurrence of hydrothermal vents on the seafloor (East Pacific Rise,

21/ N; based on Fig. 5 of Ballard et al., 1981). (a) litho -age unit s and hydroth ermal ven ts (dots) ; relative

age classes are 1.0-1.4 (youngest), 1.4-1.7 (intermediate), and 1.7-2.0 (oldest); (b) to pography  (depth

below sea level); (c) corridors arou nd contact betwe en youngest pillow an d sheet flows; (d) corridors

around fissures. 

Plate 2: Binary patterns derived from Plate 1 (study area as in Pl. la). Weights for presence or absence of

feature s were  calcula ted for 0 .01 km 2  unit cell size. (a) age, W+ = 2.251 for presence of youngest

volcanos, W - = -1.231; (b) topography , W+ = 2.037 for presence within zone with water depth between

2580 m and 26 00 m, W - = -0.811; (c) rock type, W + = 0.632 for presence  of pillow flows, W - = -0.338 for

presence of sheet flow s; (d) proximity to contact betw een youngest volcanics, W + = 2.259 fo r points

within 20 m, W - = -0.570; (c) absence/pre sence of fissures, W + = 0.178 for points at distances greater than

110 m, W - = -0.097 for points w ithin 110 m. 

Plate 3: Seafloor example. (a) Posterior probability map with eight unique conditions for the overlap of

first three binary  pattern s of Plat e 2, unit  cell size  = 0.01 km  2; (b) t-value map corresponding to Plate 3a

(t-value is ratio of posterior probability and its standard deviation); (c) posterior probability map with 31

unique co nditions for  the five binary  patterns of P late 2, unit cell size = 0.001 km . 

Plate 4: Weighted logistic regression applied to seafloor example. (a) Posterior probability map with 31

unique cond itions fo r the five b inary patterns o f Plate 2 , unit ce ll size = 0 .001 km 2 (cf. Pl. 3c); (b) t-value

map corresponding to Plate 4a; (c) Posterior probability map with 196 unique conditions for modified

logistic model. See text and caption of T able 3 for further explana tion. 

Plate 5: Weighted logistic regression applied to gold deposits (circles) in Meguma Terrane, Nova Scotia.

(a) Posterior probability map with 91 unique, conditions for seven binary patterns without missing data,

unit cell  size = 1 km 2, (b) t-value map corresponding to Plate 5a. 















Table 1 : Positive Weigh ts (W+), Contrasts (C), and Standard Deviations (s) for

Corridors around Contact between Youngest Volcanics

(Area measured in km2. Last colu mn shows t-value of C[t = C/s(C)]. The 13

corrido rs are disp layed in P late 1c.)

No. Width Area Vents W+ s(W+) C s(C) C/s(C)

1 20m 0.197 6 2.259 0.416 2.829 0.561 5.041

2 40m 0.338 7 1.863 0.382 2.549 0.559 4.557

3 60m 0.532 8 1.538 0.356 2.352 0.572 4.112

4 80m 0.721 8 1.232 0.356 1.989 0.572 3.481

5 100m 0.931 8 0.973 0.355 1.664 0.571 2.912

6 120m 1.097 8 0.808 0.355 1.443 0.571 2.526

7 140m 1.281 9 0.771 0.335 1.564 0.602 2.598

8 160m 1.480 11 0.827 0.303 2.237 0.769 2.908

9 180m 1.660 11 0.712 0.303 2.047 0.769 2.661

10 200m 1.808 11 0.626 0.302 1.896 0.769 2.464

11 220m 2.000 11 0.525 0.302 1.702 0.769 2.212

12 240m 2.164 12 0.533 0.290 2.317 1.041 2.225

13 > 240m 3.984 13

for distance from a linear feature. For example, in Table 1 the contact between youngest pillows and
sheets (Pl. le)  has the largest c ontrast for co rridor no. 1 w hich was  selected for  the binary p attern of Plate
2d. The fissure binary pattern (Pl. 2c) is also for the corridor with the largest contrast. Weights and
contrasts fo r the binary  pat- terns of P late 2 are sum marized in T able 2. Fro m the standa rd deviations  it
can be seen that the co rrelation between fissures a nd vents is probably not significant. T he binary pattern
of Plate 2e is only weakly correlated with the vents. In weights of evidence modeling, the binary patterns 

Table 2 : Weights and  Contrast (with  Standard De viations) for Five B inary

Patterns of Plate 2

Pattern W+ s(W+) W - s(W -) C s(C) C/s(C)

Age 2.251 1.000 -1.231 0.290 3.481 1.041 3.343

Topography 2.037 1.000 -0.811 0.290 2.848 1.041 2.735

Contact 2.259 0.415 -0.570 0.378 2.829 0.561 5.041

Rock type 0.632 0.410 -0.338 0.378 0.970 0.558 1.740

Fissures 0.178 0.448 -0.097 0.354 0.275 0.571 0.481

are combined w ith one another by the a ddition of weights for very small unit cells w here the features are
either present or absent. Fro m a statistical point of view, this addition is only pe rmitted if the binary
patterns are conditionally independent of the vent pattern. Chi-squared statistics for conditional
independ ence testing (A gterberg, 1992 ) cannot be  used here , because th e required  frequenc ies of points
are too s mall. It is likely  that the b inary patterns a re not co ndition ally independ ent. Fo r examp le, the age
(Pl. 2a), rock ty pe (Pl. 2c) a nd contac t corridor (Pl.  2d) pattern s were co nstructed fro m the litho-age  units
of Plate la. This assumption is corroborated by performing the following pattern correlation analysis.
Yule's measure of association Q for binary variables resembles the product-moment correlation coefficient



Figure 1: Seafloor example, analysis of relationship between hydrothermal vents and contact

between youngest volcanics (cf. Table 1). Auxiliary variable y = A . exp(W+) is plotted

against cumulative area A measured in units of 0.001  km 2. The first derivative dyc/DA of

fitted curve yc provides estimates of four values of variable w eight W +(A) that depends on

distance from the con tact. See text for further explan ation. 

in that it is equa l to zero if there  is no correla tion and ca nnot exce ed one (fo r exact linea r relationship ) in
absolute value. It is close to zero for the three pairs: age-topography (0.19), age-rock type (0.18), and
topograph y-rock type (- 0.02). In abso lute value it is relatively  large for con- ta ct corridor c orrelated w ith
age (0.95), topography (0.53), and rock type (0.53), respectively. These results suggest that the contact
corridor pattern may be re dundant, as will be de monstrated later by statistical tests. 

Posterior Probability Maps 

Plate 3a is a posterior probability map for a 0.01-km2 unit cell based on only three binary patterns (age,
topography, and rock type). The prior probability in this application was set equal to 0.033 for number of
vents (= 13) divided by total area (= 398.4 unit cells). The binary patterns of Plate 2 also can be regarded
as posterior probability maps . Presence of single features gives posterior pro babilities of 0.111 (age),
0.073 (topography), and 0.061 (rock type), respectively. These probabilities are for presence of a vent
within  a 0.01-km2 subarea at a particular place where an indicator pattern is present. In general, combining
p binary patterns gives 2P possible combinations for the unique conditions. Plate 3a is based on eight
unique conditions with probabilities equal to 0.000, 0.001, 0.006, 0.011, 0.015, 0.030, 0.171, and 0.360.
The uncertainties of these probabilities are relatively large, as shown in the corresponding t-value map of
Plate 3b where every  posterior probability was d ivided by its standard deviation. 

Plate 3e  is the po sterior p robab ility map  for a 0.0 01-km 2 unit cell using all five  binary patte rns of Plate
2. Although the patterns of Plates 3a and 3e are similar, a more detailed analysis shows that the results of
these two applications of the weights of evidence method are different. Plate 3e is based on 31 unique
conditions (one of the possible 32 combinations of five features is not represented), with probabilities
ranging from 0.000 to 0.352. The unit cell for Plate 3e is ten times as small as the one used for Plate 3a.
Because the posterior probabilities cover approximately the same range of values, this means that the
probability of f inding a ve nt per 0 .01-km 2 unit cell in the unique conditions with the largest posterior

probabilities is about ten times greater in the situation of Plate 3c. We will show later (see sections on
weighted lo gistic regression a nd goodne ss-of-fit test) tha t the model o f Plate 3a pro vides a good fit,
whereas the model underlying Plate 3e overestimates the posterior probabilities in the most favorable areas
because of lack of conditional independence of the contact corridor binary pattern. 



Analysis of Conta ct Corridor P attern 

The contrast in Table 1 has secondary maxima for corridors 8 and 12. Although the positive weights for
these other corridors are less than  that for the first corridor used for Plate 2d , their areas are larger.
Expected number of vents within a corridor is equal to the product of corridor area and posterior
probability. For this reason, a wider corridor (e.g., no. 8) can also be selected as a binary pattern. Another
method of modeling the relationship between vents and contact is to estimate weights for the intersections
of successive corridors ("classes") shown in Plate lc.

Figure 1 was derived from the  data of Table 1 for classes o f contact corridors as follow s. An auxiliary
variable y = A@exp(W +) is plotte d agains t cumula tive area A . Agterbe rg and B onham -Carte r (1990 ) have
shown that the natural logarithm of the first derivative dyc/dA of a curve y, fitted to y may provide a good
estimate of W +(A) representing a variable weight that depends on distance from the contact. Suppose m
distinct weights are calculated for m classes of distance instead of the two weights corresponding to the
two classes of a binary pattern. The observed values of Table 1 (and Fig. 1) are for increasingly wide
corridors. Adjoining classes with the smallest difference in y can be combined repeatedly until only m new
classes are retained. The result of this iterative process for m=4 is shown in Figure 1 as four straight-line
segmen ts appro ximating yc. The slopes of the four straight lines can be used to estimate the following four
weights: 2.259 (for class 1, as before), 0.566 (for classes 2 and 3), -0.043 (for classes 4 to 8), and -1.431
(for remaind er of study a rea). This p attern suggests an approx imately linea r decrease  in weight w ith
distance fro m the conta ct. This, in tur n, implies tha t the probab ility of finding a ven t within a sma ll cell
would d ecrease ex ponentially  with distan ce. It will be sho wn nex t how thes e results can  be incorpo rated in
the modeling. 

Weighted L ogistic Reg ression 

Weights o f evidence mo deling and lo gistic regression w ith the obser vations weigh ted accord ing to their
areas of the correspon ding unique conditions a re different types of application o f the loglinear model (cf.
Andersen , 1990). In w eighted logistic regre ssion, the pa tterns are no t necessarily  conditiona lly
indepe ndent a s in we ights of evidence  modelin g. Plate 4a show s poster ior prob abilities  for a 0.0 01 km2

unit cell using th e same five bin ary patterns  of Plate 3c. T he proba bilities of Plate  4a range from  0.000 to
0.054. For the most favorable unique conditions, they are nearly ten times as small as t corresponding
values that resu lted from app lying the we ights of evidenc e method to  the five binary  patterns. In this
respect, the posterior probabilities resulting from weighted logistic regression are close to those obtained
by applyin g the weights o f evidence me thod to three  binary patte rns only (cf . Pl.. 3a). Th ese results
indicat e that the  large pro babilitie s that aro se whe n the w eights of e vidence  method  was us ed with  the five
binary variables are, indeed, too large because of lack of conditional independence. The logistic regression
coefficients  and their stan dard deviatio ns are show n in Table  3. The t-value  map for Pla te 4a is show n in
Plate 4b. 

Weighted logistic regression can also be used in situations where the explanatory variables have many
classes or are continuous. In the discussion of Figure 1, it was suggested that probability of occurrence of
vents decreases exponentially with distance from contact. In order to incorporate this exponential decrease
in the logistic model, a new explanatory variable was created by assigning values decreasing from 13 to 1
to the 13 classes used for Figure 1 (cf. Pi. le). Combining this new ordinal variable with the previous four
binary variables resulted in an increase in the number of unique conditions (from 31 to 196). Plate 4e
shows the posterior probability map for this new model. In general, the pattern of Plate 4e is close to the
one of Plate 4a. Although the relationship between vents and contact was modeled in more detail, the
overall effect o f this refineme nt become s small whe n it is combine d with the re lationships o f the vents
with age, elevation, and rock type (cf. Table 3).  

Goodness-of-Fit Test 

The degree of fit of several models is evaluated in Figure 2. The posterior probability is plotted in the
horizontal direction. The product of posterior probability and area per unique condition provides
theoretical values for frequency of vents. Corresponding observed frequencies can be obtained by



Figure 2: Seafloor example, goodness-of-fit tests. Observed and estimated relative

frequenc ies versus po sterior probabilities from (a) Plate 3 a, (b) Plate 4a, (c) -P late

3c, and (d) pattern  similar to Plate 3e obtaine d after using c ontact corridor no . 8

instead of no. 1  for the contac t binary pattern. 

Table 3: Regression Coefficients for Logistic Model (B) and Modified
Logistic Model (BN) with Standard Deviations

[The value of x in BN contact between youngest volcanics ranges from 13

(corrido r no. 1) to  1 (corrid or no. 1 3).]

Pattern B s(B) BN s(BN)

Age 2.862 1.076 2.979 1.086

Topography 2.388 1.050 2.458 1.051

Contact 1.114 0.604 0.145 0.579

Rock type 0.2580 0.584 0.420 0.591

Fissures 0.139 0.579 0.062 0.076

 counting the number of vents per unique condition. Theoretical and observed frequencies were converted
to relative frequencies by dividing by total number of vents (= 13). If a model is good, the predicted total
number of vents should be close to 13. This condition is nearly satisfied in Figures 2a (weights of
evidence modeling using three bina ry patterns) and 2b (w eighted logistic regression using five binary
patterns). In the situation of Figure 2a, the model predicts 14.0 vents which is one too many; the model of
Figure 2b pr edicts 12.6  vents-slightly less th an 13. Th e Kolmogo rov-Smirnov (K -S) test can be u sed to
evaluate the largest difference between observed and expected relative frequencies. In Figure 2a, the
absolute value of the largest difference is 0.081. In a two-tailed test with eight observations, this value
should not exceed  0.454 with a prob ability of 95%. Th e corresponding 95%  confidence level for Figure
2b w ith 31 observa tions is 0 .238  which al so is  greater than the observe d valu e of 0 .099  in th is dia gram. It
may be conclud ed that the models tested in Figures 2 a and 2b provide a good  fit. 

On the other hand, the degree of fit of the models underlying Figures 2e and 2d is poor. Figure 2e
correspon ds to Plate 3 e for whic h it was alrea dy show n that the five bin ary patterns  are not con ditionally
independent. Th e predicted total number o f vents is 37.6, which is nearly thre e times too large.  
Moreover, the absolute value of the largest difference (= 1.892) in Figure 2e exceeds the 95% confidence
level (= 0.238) in the K-S test. Figure 2d is for a p robability map (not show n) derived from five binary
patterns in which the contact pattern was for the wider corridor comprising classes 1 through 8 in Plate le.



Figure 3: Goodness-of-fit test applied to logistic model for gold deposits, Meguma

Terrane (Pl. 5a) . The difference betw een observed and  theoretical relative frequenc ies is

plotted against posterior probability. See text for further explanation.

The expected total number of vents then is 28.4, which is more than twice the observed total (= 13). The
absolute value of the largest difference (= 1.184) in Figure 2d exceeds the 95% confidence level (= 0.238)
for a good fit. 

The largest posterior probabilities in Figures 2e and 2d are 0.352 and 0.115, respectively. Differences
between observed and calculated frequencies do not exceed the 95% confidence level of the K-S test
except for the three or four largest posterior probabilities. The models underlying Figures 2e and 2d
provide a good fit except in the mo st favorable unique cond itions where the freque ncies of vents are
overestimated by a wide  margin. 

The preceding application of the K-S test differs from other applications of this test because in our
application the model also predicts total number of discrete events. Normally a non-zero difference
between observed and expected frequencies at the largest value does not arise because the observations
originate from an infinitely large population. In a strict sense, the Kolmogorov-Smirnov test statistics may
only be used when the total number of discrete events is correctly predicted. The approximate K-S test
used in this paper loses its validity whe n the expected relative frequen cy is not approximately e qual to 1.0
at the largest value. Note that in Bonham-Carter et al. (1990) the K-S test was applied, but the theoretical
as well as the observed cumulative frequencies were constrained to reach a maximum of 1.0. This had the
advantage of satisfying the assumptions for the K-S test, but the disadvantage of failing to recognize
theoretical frequencies that are too  large. 

Also note that possible undiscovered deposits are not considered in the goodness-of-fit test. The reason
that results of weights of evidence modeling and logistic regression are useful for mineral potential
mapping is that the estimated weights are approximately independent of undiscovered deposits in a study
region provided that the known deposits can he regarded as a random subset of all (known + unknown)
deposits in th e region. On ly the prior p robability in  weights of evid ence mod eling and the c onstant term  in
logistic regression depend strongly on u ndiscovered deposits (cf. Agterberg, 199 2). 

Gold Deposits in Central Nova Scotia 

In the weighted logistic regression, 68 gold deposits were related to the fol- lowing seven binary patterns
(cf. Bonham-Carter et al., 1990). (1) proximity to anticlinal axes, (2) Au in balsam fir, (3) contact between
Goldenville and Halifax Formations, (4) Goldenville Formation, (5) Devonian granite contact zone, (6)
lake sedimen t signature, and  (7) NW  lineaments.  The assu mption of co nditional ind ependen ce is slightly
violated in this application. For example, weights of evidence modeling for a 1-km unit cell on these seven



binary patterns results in a predicted total number of deposits equal to 75.2, which exceeds the observed
total by nearly 10%. It is noted that patterns (2) and (6) are missing in parts of the area. In weights of
evidence modeling, the we ights can be estimated for patterns w ith missing data by omitting areas that are
unknown from the weight calculations. In logistic regression, this procedure would result in significant
loss of information because coefficients for all patterns are estimated simultaneously; thus, omitting areas
with missing data would eliminate these regions from estimation entirely. For this reason patterns (2) and
(6) were modified so that, in regions where the patterns are missing, they were treated as being “not
present." Logistic regression on the resulting revised data set predicts 64.3 gold deposits-slightly less than
68. 
The we ights, their stand ard deviations, and con trasts of the w eights of eviden ce modelin g are compa red to
the estimated  logistic regression  coefficients  in Table 4.  Plate 5a sho ws the logistic  posterior pro bability
map wh ich is similar to w eights of eviden ce modelin g results previou sly show n in Bonh am-Carter  et al.
(1990). Plate 5b sho ws the posterior prob abilities divided by their standard deviations (t-value ma p). A
significant diffe rence betw een Plate 5 b and the t-va lue maps fo r the seafloo r example (P ls. 3b and 4 b) is
that the values in Plate 5b are relatively large. In an approximate significance test based on the normal
distribution in standard form, a t-value greater than 1.645 indicates that the corresponding posterior

Table 4: Weights and Contrasts  (with Standard Deviations) for Seven 
Binary Patterns Related to Gold Deposits in Meguma Terrane, Nova Scotia 

[Regression coefficients for logis tic model (B) an d their stand ard deviations, 

are shown in last two columns. F irst row (pattern no. 0) is for constant term in weighted logistic regression.] 

Pattern
No. W+ s(W+) W- s(W-) C s(C) B s(B)

0 -6.172 0.501

1 0.563 0.143 -0.829 0.244 1.392 0.283 1.260 0.301

2 0.836 0.210 -0.293 0.160 1.129 0.264 1.322 0.267

3 0.367 0.174 -0.268 0.173 0.635 0.246 0.288 0.266

4 0.311 0.128 -1.474 0.448 1.784 0.466 1.290 0.505

5 0.223 0.306 -0.038 0.134 0.261 0.334 0.505 0.343

6 1.423 0.343 -0.375 0.259 1.798 0.430 0.652 0.383

7 0.041 0.271 -0.010 0.138 0.051 0.304 0.015 0.309

 probability is greater than 0 with a probability of 95%. This greater degree of precision is due to the larger
number of occurre nces for the Nova Scotia ex ample. 

Finally, Figu re 3 is for evalua tion of the goo dness of fit o f the logistic mod el of Plate 5. T he absolu te
value of the largest difference between expected and observed relative frequencies is 0.0775. This is less
than the Kolmogorov-Smirnov statistic (= 0.1426; 95% two-tailed test) and it may be concluded that the
fit of the logistic model is good. 

Concluding Remarks 

Care should be taken  in weights of evidence mode ling to avoid bias caused by pred ictive patterns that are

mutually inte rrelated, bec ause violation s of the con ditional inde pendenc e assumptio n usually lea d to
overestimation of the largest posterior probabilities. The problem of bias is avoided when weighted
logistic regression is used. In general, the drawbacks of regression are that it cannot be applied without
making assumptions about missing values unless all explanatory patterns are fully known for a study area.
Moreo ver, the standa rd deviations  of regression c oefficients c an be unre asonably  large if there is
multicollinearity. The latter problems are of minor significance in this paper where the logistic model



produced satisfactory re sults in all applications. 

It is suggested in this pa per that both  weights of evid ence and  logistic regression  solutions be  routinely
compared . The we ights of evidenc e method y ields readily  interpreted p ositive and ne gative weights an d is
a straight- forward method for determining optimal cutoffs for the creation of binary patterns and for
handling missing data. On the other hand, logistic regression provides a cheek on the effects of lack of
conditional independence, in addition to the X  2- and K-S tests suggested for the weights of evidence
method. 
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