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WEIGHTS OF EVIDENCE MODELING AND WEIGHTED
LOGISTIC REGRESSION FOR MINERAL POTENTIAL
MAPPING*

F.P. Agterberg, G.F. Bonham-Carter, Q. Cheng and D.F. Wright

During the past few years, we have developed a method of weights of evidence modeling for mineral
potential mapping (cf. Agterberg, 1989; Bonham-Carter et al., 1990). In this paper, weights of evidence
modeling and logistic regression are applied to occurrences of hydrothermal vents on the ocean floor, East
Pacific Rise near 21 N. For comparison, logistic regression is also applied to occurrences of gold deposits
in Meguma Terrane, Nova Scotia.

The volcanic, tectonic, and hydrothermal processesalong the central axis of the East Pacific Rise at 21
N were originally studied by Ballard et al. (1981). Their maps were previously taken asthe starting point
for apilot project on estimation of the probability of occurrence of polymetallic massive sulfide deposits
on the ocean floor (Agterberg and Franklin, 1987). In the earlier work, presence or absence of depositsin
relatively large square cells was related to explanatory variables quantified for small square cells (pixels)
by means of stepwise multiple regression and logistic regression. In this paper, weights of evidence
modeling and weighted logistic regresson are applied to the same maps but a geographic information
system (Intera-TYDAC SPANS, 1991) was used to create polygons for combinations of maps. These
polygons can be classified taking the different classes from each map. Probabilities estimated for the
resulting "unique conditions" can be classified and displayed. The vents are correlated with only a few
patterns and itis relatively easy to interpret theweights and find probability maps in terms of the
underlying volcanic, tectonic, and hydrothermad processes. The vents are situated along the central axis of
the rise together with the youngest voicanies. They occur at approximately the same depth below sealevel,
tend to be associated with pillow flows rather than sheet flows, and with absence of fissures which are
more prominent in older volcanics.

Contrary to weights of evidence modeling, weighted logistic regression (cf. Agterberg, 1992, for
discussion of algorithm) can he applied when the explanatory variables are not conditionally independent.
This method was previously applied by Reddy et al. (1991) to volcanogenic massive suifide depositsin
the Snow Lake area of M anitoba.. T he assumptions underlying these methods will be evaluated in detail
for the seafloor example.

The gold depositsin Meguma Terrane, Nova Scotia, were previously used for weights of evidence
modeling (Bonham-Carter et al., 1988; Wright, 1988; Agterberg et al., 1990; Bonham-Carter et al., 1990).
It will be shown in this paper that similar results are obtained when weighted logistic regression is used.
The degree of fit of the different statistical modelsis evaluated for all applicationsin this paper. A
difference between the two examples of application is that the number of hydrothermal vents on the
seafloor is anall in comparison to the number of Nova Scotia gold deposits. For this reason, the posterior
probabilities have greater relative precision in the N ova Scotia example.

Hydrothermal Vents on the Ocean Floor

The maps used for this example are shown in Plate 1 (color illustrations are grouped together; Plates 2-5
follow Plate 1). The volcanos on the East Pacific Rise are of two types. (1) pillow flows, and (2) sheet
flows. There are three age classes. Ballard et al. (1981) determined rel ative age by measuring relative
amounts of sediments deposited on top of the voleanies. The resulting six litho-age units are shown in
Plate la together with the occurrences of 13 hydrothermal vents The other map patterns of Plate 1 are for



topography (depth to sea bottom, PI. 1b), distance to contact between youngest pillow flows and youngest
sheet flows (PI. le), and distance to fissures (PI. 1d). The first step in weights of evidence modeling
consisted of constructing binary patterns which are relatively strongly correlated with the vents. Five
binary patterns for the seafloor example are shown in Plate 2. Each pattern has positive weight W™ for
presence of afeature and negative weight W~ for its absence. The contrast C = W'-W" is a measure of the
strength of correlation between the ventsand a binary pattern. A binary pattern can be constructed by
maximizing the contrast. For example, from Plate Ib for topography it can he seenthat nearly all (12 of
13) vents belong to a single 20-m topographic interval and this prompted the choice of the binary pattern
of Plate 2b. A table of contrast versus corridor width can be used for deciding on the binary pattern

Plates

Plate 1: Patterns used for example of occurrence of hydrothermal vents on the seafloor (East Pacific Rise,
21 N; based on Fig. 5 of Ballard et al., 1981). (@) litho-age units and hydrothermal vents (dots); relative
age classes are 1.0-1.4 (youngest), 1.4-1.7 (intermediate), and 1.7-2.0 (oldest); (b) topography (depth
below sea level); (c) corridors around contact between youngest pillow and sheet flows; (d) corridors
around fissures.

Plate 2: Binary patterns derived from Plate 1 (study area asin Pl. |a). Weights for presence or absence of
features were calculated for 0.01 km? unit cell size. (a) age, W* = 2.251 for presence of youngest
volcanos, W™ = -1.231; (b) topography, W* = 2.037 for presencewithin zone with water depth between
2580 m and 2600 m, W™ = -0.811; (c) rock type, W* = 0.632 for presence of pillow flows, W™ =-0.338 for
presence of sheet flows; (d) proximity to contact betw een youngest volcanics, W* = 2.259 for points
within 20 m, W~ = -0.570; (c) absence/presence of fissures, W* = 0.178 for pointsat distancesgreater than
110 m, W~ = -0.097 for points within 110 m.

Plate 3: Seafloor example. (8 Posterior probability map with eight unique conditions for the overlap of
first three binary patterns of Plate 2, unit cell size = 0.01 km ?; (b) t-value map corresponding to Plate 3a
(t-valueis ratio of posterior probability and its standard deviation); (c) posterior probability mgp with 31
unique conditions for the five binary patterns of Plate 2, unit cgl| size = 0.001 km .

Plate 4: Weighted logistic regression applied to seafloor example. (8 Posterior probability map with 31
unique conditions for the five binary patterns of Plate 2, unit cell size = 0.001 km? (cf. Pl. 3c); (b) t-value
map corresponding to Plate 4a; (c) Posterior probability map with 196 unique conditions for modified
logistic model. See text and caption of T able 3 for further explanation.

Plate 5: Weighted | ogistic regression applied to gold deposits (circles) in Meguma Terrane, Nova Scotia.
(a) Posterior probability map with 91 unique, conditions for seven binary patterns without missing data,
unit cell size =1 km?, (b) t-value map corresponding to Plate 5a.
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Table 1: Positive Weights (W*), Contrasts (C), and Standard Deviations(s) for
Corridors around Contact between Y oungest Volcanics
(Areameasured in km2. Last column shows t-vd ue of C[t = C/s(C)]. The 13

corridors are displayed in Plate 1c.)

No Width Area Vents w* (W™ Cc s(C) Cl/s(C)
1 20m 0.197 6 2.259 0.416 2.829 0.561 5.041
2 40m 0.338 7 1.863 0.382 2.549 0.559 4.557
3 60m 0.532 8 1.538 0.356 2.352 0.572 4.112
4 80m 0.721 8 1.232 0.356 1.989 0.572 3.481
5 100m 0.931 8 0.973 0.355 1.664 0.571 2.912
6 120m 1.097 8 0.808 0.355 1.443 0.571 2.526
7 140m 1.281 9 0.771 0.335 1.564 0.602 2.598
8 160m 1.480 11 0.827 0.303 2.237 0.769 2.908
9 180m 1.660 11 0.712 0.303 2.047 0.769 2.661
10 200m 1.808 11 0.626 0.302 1.896 0.769 2.464
11 220m 2.000 11 0.525 0.302 1.702 0.769 2.212
12 240m 2.164 12 0.533 0.290 2.317 1.041 2.225
13 > 240m 3.984 13

for distance from a linear feature. For example, in Table 1 the contact between youngest pillows and
sheets (PI. le) hasthe largest contrast for corridor no. 1 which was selected for the binary pattern of Plate
2d. The fissure binary pattern (Pl. 2c) is als for the corridor with the largest contrast. Weights and
contrasts for the binary pat- terns of Plate 2 are summarized in T able 2. From the standard deviations it
can be seen that the correlation between fissures and vents is probably not significant. T he binary pattern
of Plate 2eis only weakly correlated with the vents. In weights of evidence modeling, the binary patterns

Table 2: Weights and Contrast (with Standard Deviations) for Five Binary
Patterns of Plate 2

Pattern W+ (W) W (W) C 5(C) C/s(C)
Age 2.251 1.000 -1.231 0.290 3.481 1.041 3.343
Topography 2.037 1.000 -0.811 0.290 2.848 1.041 2.735
Contact 2.259 0.415 -0.570 0.378 2.829 0.561 5.041
Rock type 0.632 0.410 -0.338 0.378 0.970 0.558 1.740
Fissures 0.178 0.448 -0.097 0.354 0.275 0.571 0.481

are combined with one another by the addition of weights for very small unit cells where the features are
either present or absent. From a statistical point of view, this addition is only permitted if the binary

patterns are conditionally independent of the vent pattern. Chi-squared statistics for conditional

independence testing (A gterberg, 1992) cannot be used here, because the required frequencies of points
aretoo small. It islikely that the binary patterns are not conditionally independent. For example, the age
(PI. 2a), rock ty pe (Pl. 2c) and contact corridor (Pl. 2d) patterns were constructed from the litho-age units
of Plate la. This assumption is corroborated by performing the following pattern correlation analysis.

Y ule's measure of association Q for binary variables resemblesthe product-moment correlation coefficient



inthat it is equal to zero if there is no correlation and cannot exceed one (for exact linear relationship) in
absolute value. It is close to zero for the three pairs: age-topography (0.19), age-rock type (0.18), and
topography-rock type (-0.02). In absolute value it isrelatively large for con- tact corridor correlated with
age (0.95), topography (0.53), and rock type (0.53), respectively. These reaults suggest that the contact
corridor pattern may be redundant, as will be demonstrated later by statistical tests.

Posterior Probability Maps

Plate 3ais a pogerior probability map for a0.01-km2 unit cell based on only three binary patterns (age,
topography, and rodck type). The prior probability in this application was set equal to 0.033 for number of
vents (= 13) divided by total area (= 398.4 unit cells). The binary patterns of Plate 2 also can beregarded
as posterior probability maps. Presence of single features gives posterior probabilities of 0.111 (age),
0.073 (topography), and 0.061 (rock type), respectively. These probabilities are for presence of a vent
within a0.01-km? subarea at a particular place where an indicator pattern is present. In general, combining
p binary patterns gives 2° possible combinations for the unique conditions. Plate 3a is based on eight
unique conditions with probabilities equal to 0.000, 0.001, 0.006, 0.011, 0.015, 0.030, 0.171, and 0.360.
The uncertainties of these probabilities are relatively large, as shown in the corresponding t-value map of
Plate 3b where every posterior probability was divided by its standard deviation.

Plate 3e is the posterior probability map for a 0.001-km? unit cell using all five binary patterns of Plate
2. Although the patterns of Plates 3a and 3e are similar, a more detailed analysis shows that the results of
these two applications of the weights of evidence method are different. Plate 3e is based on 31 unique
conditions (one of the possible 32 combinations of five features is not represented), with probabilities
ranging from 0.000 to 0.352. The unit cell for Plate 3e is ten times as small as the one used for Plate 3a.
Because the posterior probabilities cover approximately the same range of values, thismeans that the
probability of finding avent per 0.01-km? unit cell in the unique conditions with the largest posterior
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Figure 1: Seafloor example, analysis of relationship between hydrothermal vents and contact
between youngest volcanics (cf. Table 1). Auxiliary variabley = A. exp(W+) is plotted
against cumulative area A measured in units of 0.001 km 2. The first derivative dy /DA of
fitted curvey, provides estimates of four values of variable w eight W *(A) that depends on
distance from the contact. See text for further explanation.

probabilities is about tentimes greater in the situation of Plate 3c. We will show later (see sections on
weighted logistic regression and goodness-of-fit test) that the model of Plate 3a provides a good fit,
whereas the model underlying Plate 3e overestimatesthe posterior probabilities in the most favorable areas
because of lack of conditional independence of the contact corridor binary pattern.



Analysis of Contact Corridor Pattern

The contrast in Table 1 has secondary maxima for corridors 8 and 12. Although the positive weights for
these other corridors are less than that for the first corridor used for Plate 2d, their areas are larger.
Expected number of vents within a corridor is equal tothe product of corridor area and posterior
probability. For this reason, a wider corridor (e.g., no. 8) can also be selected as a binary pattern. Another
method of modeling the relationship between ventsand contact is to estimate weights for the intersections
of successive corridors ("classes") shown in Plate Ic.

Figure 1 was derived from the data of Table 1 for classes of contact corridors as follows. An auxiliary
variabley = A exp(W™) is plotted against cumulative area A . Agterberg and B onham-Carter (1990) have
shown that the natural logarithm of the first derivative dy /dA of acurvey, fitted to y may provide a good
estimate of W*(A) representing a variable weight tha depends on distance from the contact. Suppose m
distinct weights are calculated for m classes of distanceinstead of thetwo weights corresponding to the
two classes of a binary pattern. The observed values of Table 1 (and Fig 1) are for increasingly wide
corridors. Adjoining classes with the smallest difference in y can be combined repeatedly until only m new
classes are retained. The result of this iterative process for m=4 is shown in Figure 1 asfour straight-line
segments approximating y.. The slopes of thefour straight lines can be used to estimate the following four
weights: 2.259 (for class 1, as before), 0.566 (for classes 2 and 3), -0.043 (for classes 4 to 8), and -1.431
(for remainder of study area). This pattern suggests an approximately linear decrease in weight with
distance from the contact. This, in turn, implies that the probability of finding a vent within a small cell
would decrease ex ponentially with distance. It will be shown next how these results can be incorporated in
the modeling.

Weighted L ogistic Regression

Weights of evidence modeling and logistic regression with the obser vations weighted according to their
areas of the corresponding unique conditions are different types of application of the loglinear model (cf.
Andersen, 1990). In weighted logistic regression, the patterns are not necessarily conditionally
independent as in weights of evidence modeling. Plate 4a show's posterior probabilities for a 0.001 km?
unit cell using the same five binary patterns of Plate 3c. T he probabilities of Plate 4a range from 0.000 to
0.054. For the most favorable unique conditions, they are nearly tentimes as small ast correponding
values that resulted from applying the weights of evidence method to the five binary patterns. In this
respect, the poderior probabilities resulting from weighted | ogistic regression are close to those obtained
by applying the weights of evidence method to three binary patterns only (cf. Pl.. 3a). These results
indicate that the large probabilities that arose when the weights of evidence method was used with the five
binary variables are, indeed, too large because of lack of conditional independence. The logistic regression
coefficients and their standard deviations are shown in Table 3. The t-value map for Plate 4ais shownin
Plate 4b.

Weighted logigic regression can also be used in situations where the explanatory variableshave many
classes or are continuous. In the discussion of Figure 1, it was suggested that probability of occurrence of
vents decreases exponentially with distance from contact. In order to incorporate this exponential decrease
in the logistic model, anew explanatory variable was created by assigning values decreasng from 13to 1
to the 13 classes used for Figure 1 (cf. Pi. le). Combining this new ordinal variable with the previousfour
binary variables resulted in an increase in the number of unique conditions (from 31 to 196). Plate 4e
shows the posterior probability map for this new model. In general, the pattern of Plate 4e is close to the
one of Plate 4a. Although the relationship between vents and contact was modeled in more detail, the
overall effect of this refinement becomes small when it is combined with the relationships of the vents
with age, elevation, and rock type (cf. Table 3).

Goodness-of-Fit Test
The degree of fit of several modelsis evduated in Figure 2. The posterior probability is plotted in the

horizontal direction. The product of posterior probability and area per unique condition provides
theoretical values for frequency of vents Corresponding observed frequencies can be obtained by



Table 3: Regression Coefficients for Logistic Model (B) and Modified
Logistic Model (B ) with Standard Deviations
[The valueof xin B contact beween youngest vol canics ranges from 13
(corridor no. 1) to 1 (corridor no. 13).]

Pattern B s(B) B s(B )
Age 2.862 1.076 2.979 1.086
Topography 2.388 1.050 2.458 1.051
Contact 1.114 0.604 0.145 0.579
Rock type 0.2580 0.584 0.420 0.591
Fissures 0.139 0.579 0.062 0.076

counting the number of vents per unique condition. Theoretical and observed frequencies were converted
to relative frequenciesby dividing by total number of vents (= 13). If amodel is good, the predicted total
number of vents should be close to 13. This condition is nearly satisfied in Figures 2a (weights of
evidence modeling using three binary patterns) and 2b (weighted logistic regression using five binary
patterns). In the situation of Figure 2a, the model predicts 14.0 vents which is one too many; the model of
Figure 2b predicts 12.6 vents-slightly less than 13. The Kolmogorov-Smirnov (K -S) test can be used to
evaluate the largest difference between observed and expected relative frequencies. In Figure 2a, the
absolute value of the largest differenceis 0.081. In atwo-tailed test with eight observations, this value
should not exceed 0.454 with a probability of 95%. The corresponding 95% confidence level for Figure
2b with 31 observationsis 0.238 which a so is greater than the observed value of 0.099 in this diagram. It
may be concluded that the models tested in Figures 2a and 2b provide a good fit.

On the other hand, the degree of fit of the models underlying Figures 2e and 2d is poor. Figure 2e
corresponds to Plate 3e for which it was already show n that the five binary patterns are not conditionally
independent. The predicted total number of ventsis 37.6, which is nearly three times too large.

Moreover, the absolute value of the largest difference (= 1.892) in Figure 2e exceeds the 95% confidence
level (= 0.238) in the K-S test. Figure 2d is for a probability map (not show n) derived from five binary
patterns in which the contact pattern was for the wider corridor comprising classes 1 through 8 in Plate le.
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The expected total number of vents then is 28.4, which ismore than twice the observed total (= 13). The
absolute value of the largest difference (= 1.184) in Figure 2d exceeds the 95% confidence level (= 0.238)
for agood fit.

The largest pogerior probabilities in Figures 2e and 2d are 0.352 and 0.115, respectively. Differences
between observed and calculated frequencies do not exceed the 95% confidence level of the K-S test
except for the three or four largest posterior probabilities. The modelsunderlying Figures 2e and 2d
provide a good fit except in the most favorable unique conditions where the frequencies of vents are
overestimated by a wide margin.

The preceding application of the K-Stest differs from other applicationsof this test because in our
application the model also predicts total number of discrete events. Normally a non-zero difference
between observed and expected frequencies at the larges value does not arise because the observations
originatefrom an infinitely large population. In a strict sense, the Kolmogorov-Smirnov test statistics may
only be used when the total number of discrete eventsis correctly predicted. The approximate K-S test
used in this paper loses its validity when the expected relative frequency is not approximately equal to 1.0
at the largest value. Note that in Bonham-Carter et al. (1990) the K-S test was applied, but the theoretical
as well as the observed cumulative frequencies were congrained to reach a maximum of 1.0. This had the
advantage of satisfyingthe assumptionsfor the K-S test, but the disadvantage of failing to recognize
theoretical frequencies that are too large.

Also note that possible undiscovered deposits are not considered in the goodness-of-fit tes. The reason
that results of weights of evidence modeling and logigic regression are useful for mineral potential
mapping is that the estimated weights are approximately independent of undiscovered deposits in a study
region provided that the known deposits can he regarded as a random subset of all (known + unknown)
depositsin the region. Only the prior probability in weights of evidence modeling and the constant term in
logistic regression depend strongly on undiscovered deposits (cf. Agterberg, 1992).

Gold Depostsin Central Nova Scotia

In the weighted logistic regression, 68 gold deposits were related to the fol- lowing seven binary patterns
(cf. Bonham-Carter & al., 1990). (1) proximity to anticlinal axes, (2) Auin balsam fir, (3) contact between
Goldenville and Halifax Formations, (4) Goldenville Formation, (5) Devonian granite contact zone, (6)
lake sediment signature, and (7) NW lineaments. The assumption of conditional independence is slightly
violated in this application. For example weights of evidence modeling for a 1-km unit cell on these seven
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Figure 3: Goodness-of fit test goplied to logigic model for gold deposits, Meguma
Terrane (Pl. 5a) . The difference betw een observed and theoretical relative frequenciesis
plotted against posterior probahility. See text for further explanation.



binary patternsresults ina predicted total number of deposits equal to 75.2, which exceeds the observed
total by nearly 10%. It is noted that pattems (2) and (6) are missing in parts of the area. In weights of
evidence modeling, the weights can be estimated for patterns with missing data by omitting areas that are
unknown from the weight calculations In logistic regression, this procedure would result in significant
loss of information because coefficients for all pattems are estimated simultaneously; thus, omitting areas
with missing data would eliminate these regions from estimation entirely. For thisreason patterns(2) and
(6) were modified s that, in regions where the patterns are missing, they weretreated as being “ not
present." Logistic regression on the resulting revised data st predicts 64.3 gold deposits-slightly less than
68.

The weights, their standard deviations, and contrasts of the w eights of evidence modeling are compared to
the estimated logistic regression coefficients in Table 4. Plate 5a shows the logistic posterior probability
map which is similar to weights of evidence modeling results previously shown in Bonham-Carter et al.
(1990). Plate 5b shows the posterior probabilities divided by their standard deviations (t-value map). A
significant difference betw een Plate 5b and the t-value maps for the seafloor example (Pls. 3b and 4b) is
that the values in Plate 5b are relatively large. In an approximate significance test based on the normal
distribution in standard form, a t-value greater than 1.645 indicatesthat the corresponding posterior

Table 4: Weights and Contrasts (with Standard Deviations) for Seven
Binary Patterns Related to Gold Depositsin Meguma Terrane, Nova Scotia
[Regression coefficients for logistic model (B) and their stand ard deviations,
are shown in last two columns. First row (pattern no. 0) is for constant term in weighted logistic regression.]

Pattern
No. W+ S(W+) W- S(W-) C s(C) B s(B)
0 -6.172 0.501
1 0.563 0.143 -0.829 0.244 1.392 0.283 1.260 0.301
2 0.836 0.210 -0.293 0.160 1.129 0.264 1.322 0.267
3 0.367 0.174 -0.268 0.173 0.635 0.246 0.288 0.266
4 0.311 0.128 -1.474 0.448 1.784 0.466 1.290 0.505
5 0.223 0.306 -0.038 0.134 0.261 0.334 0.505 0.343
6 1.423 0.343 -0.375 0.259 1.798 0.430 0.652 0.383
7 0.041 0.271 -0.010 0.138 0.051 0.304 0.015 0.309

probability is greater than 0 with a probability of 95%. This greater degree of precision is due to the larger
number of occurrences for the Nova Scotia example.

Finally, Figure 3 is for evaluation of the goodness of fit of the logistic model of Plate 5. T he absolute
value of the largest difference between expected and observed relative frequenciesis 0.0775. Thisisless
than the Kolmogorov-Smirnov datistic (= 0.1426; 95% two-tailed test) and it may be concluded that the
fit of the logistic modd is good.

Concluding Remarks

Care should be taken in weights of evidence modeling to avoid bias caused by predictive patterns that are
mutually interrelated, because violations of the conditional independence assumption usually lead to
overestimation of the largest posterior probabilities. The problem of bias is avoided when weighted
logistic regression is used. In general, the drawbacks of regression are that it cannot be applied without
making assumptions about missing values unless all explanaory patternsare fully known for a study area.
Moreover, the standard deviations of regression coefficients can be unreasonably large if thereis
multicollinearity. The latter problems are of minor significance in this paper where the logistic modd



produced satisfactory resultsin all applications.

It is suggested in this paper that both weights of evidence and logistic regression solutions be routinely
compared. The weights of evidence method yields readily interpreted positive and negative weights and is
a straight- forward method for determining optimal cutoffs for the creation of binary patterns and for
handling mising data. On the other hand, logistic regression provides a cheek on the effects of lack of
conditional independence, in addition to the X 2- and K-S tests suggested for the weights of evidence
method.
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