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Weights-of-evidence modeling is a GIS-based technique for relating a point pattern for lo-
cations of discrete events with several map layers. In general, the map layers are binary or
ternary. Weights for presence, absence or missing data are added to a prior logit. Updating
with two or more map layers is allowed only if the map layers are approximately condition-
ally independent of the point pattern. The final product is a map of posterior probabilities of
occurrence of the discrete event within a small unit cell. This paper contains formal proof that
conditional independence of map layers implies that T, the sum of the posterior probabilities
weighted according to unit cell area, is equal to n, being the total number of discrete events.
This result is used in the overall or “omnibus test” for conditional independence. In practical
applications, T generally exceeds n, indicating a possible lack of conditional independence.
Estimation of the standard deviation of T allows performance of a one-tailed test to check
whether or not T-n is significantly greater than zero. This new test is exact and simpler to use
than other tests including the Kolmogorov-Smirnov test and various chi-squared tests adapted
from discrete multivariate statistics.

KEY WORDS: Conditional independence; weights-of-evidence; mineral deposits; map layers; signifi-
cance test.

INTRODUCTION

Weights-of-evidence modeling was developed
originally for medical diagnosis, but was applied sub-
sequently to mineral–potential mapping. A pattern
of mineral deposits is related to several map lay-
ers representing geoscience data that may be indica-
tive of occurrence of mineral deposits. A comprehen-
sive summary of the theory with applications is given
in Bonham-Carter (1994). Arc-WofE is a weights-
of-evidence extension for ArcView/Spatial Analyst
users that is available freely on the Internet (Kemp,
Bonham-Carter, and Raines, 1999). It includes docu-
mentation and references.
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The number of users of weights-of-evidence is
increasing. Users now include scientists in fields
such as physical geography, epidemiology, ecology,
forestry, and medicine for the study of regional dis-
ease occurrence patterns. Examples of recent pa-
pers using and evaluating weight-of-evidence are
Carranza and Hale (2000, 2002), Cheng and Agter-
berg (1999), Boleneus and others (2001), Harris and
others (2001), Mihalasky and Bonham-Carter (2001),
Raines (1999), Scott and Dimitrakopoulos (2001), and
Venkataraman and others (2000).

Other pattern recognition techniques with sim-
ilar objectives include neural networks (Singer and
Kouda, 1999) and logistic regression (Agterberg and
Bonham-Carter, 1999). Weights-of-evidence also is
compared to other techniques in the book by Pan and
Harris (2000). One of the advantages of weights-of-
evidence is its simplicity, and straightforward inter-
pretation of the weights.

Suppose that n deposits have been discovered in a
study region of N equal-area unit cells. The unit cell is
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small. It may be a pixel or simply a relatively small unit
of area. The prior probability, Pd, that a cell selected
at random contains a deposit (or the center of gravity
of a deposit) is set equal to n/N. If NA cells are un-
derlain by binary map layer A representing a theme
favorable for occurrence of deposits, nA/NA > n/N.
This relation can be written as P(d | A) > Pd with
P(d | A) = nA/NA denoting the probability that a cell
on Acontains a deposit.

The probability that a randomly selected cell oc-
curs on A is PA= NA/N. The probability P(A| d) =
nA/n that a deposit cell occurs on A satisfied Bayes’
rule for the relationship between P(d | A) and P(A| d)
that can be derived as follows. If dA denotes presence
of both d and A in a cell, it follows that P(d | A) =
P(dA)/PA and P(A| d) = P(dA)/Pd. Elimination
of P(dA) gives P(d | A) = P(A| d) · Pd/PA (Bayes’
rule). It is convenient to use logits L= loge{P/(1−
P)}. In terms of logits, Bayes’ rule becomes L(d | A) =
W+(A)+ Ld where L(d | A) and Ld correspond to
P(d | A) and Pd. The positive weight of A satisfies
W+(A) = loge P(A| d)/(P(A| ∼d) with ∼ denoting
“not.” The validity of these statements can be veri-
fied readily by using the probabilities P(∼d) = (N−
n)/N and P(∼d | A) = (NA− nA)/NA for cells with-
out deposits. A negative weight W−(A) = W+(∼A)
applies to the N− NA cells not belonging to A.

Suppose that the prior logit Ld is updated using
map layer A. The unit cells are assigned new values
representing posterior logits for presence and absence
of A. In practical applications, information on pres-
ence or absence of A may be missing for a cell. The
pattern of A then is ternary instead of binary. The
prior logit is left unchanged when information on A
is missing.

If XA and X∼A represent binary random variables
for presence and absence of a deposit in a unit cell on
A, respectively, then the two posterior probabilities
satisfy EXA = P(A| d) and EX∼A = P(∼A| d) where
E represents mathematical expectation. This pair of
random variables can be written as XI(I = A, ∼A).

The posterior logits of the unit cells can be up-
dated further using the weights of a second binary or
ternary map layer B if A and B are conditionally in-
dependent of the mineral deposits. This condition im-
plies P(AB | d) = P(A| d) · P(B | d) where AB rep-
resents presence of both A and B. If XA and XB are
binary random variables for deposits on the two map
layers, conditional independence exists if E(XIXJ) =
EXI · EXJ. (I = A, ∼ A; J = B, ∼B).

A characteristic feature of this type of con-
ditional independence is that it does not nec-

essarily imply relations such as P(AB | ∼d) =
P(A| ∼d) · P(B | ∼d). This is because mineral de-
posits occur at points. In this respect, weights-of-
evidence modeling differs from other applications of
discrete multivariate analysis.

The updating process can be continued using
other binary map layers. For example, if a third pair
of binary random variables XK (K = C, ∼C) is added,
conditional independence continues to exist if E(XI

XJ XK) = EXI · EXJ · EXI. The order according to
which updating takes place is immaterial, and weights
for all map layers can be added simultaneously to the
prior logit Ld of a cell. The final posterior logits Lf

can be transformed into posterior probabilities Pf . In
this paper, the sum of posterior probabilities over all
unit cells in the study area is written as T.

As discussed in Agterberg, Bonham-Carter, and
Wright (1990), asymptotic theory of discrete multi-
variate analysis can be used to estimate variances of
the weights; these can be augmented by variances for
missing data and added to the variance of the prior
logit. The result is an estimate of the standard devia-
tion of Lf .

The first derivative of L with respect to P is
{P(1− P)}−1. Multiplication of the standard devia-
tion of Lf by Pf (1− Pf ) provides an approximate
estimate of the standard deviation of Pf . Estimated
standard deviations of all posterior probabilities in
the study area can be combined with one another to
estimate the standard deviation of T.

CONDITIONAL INDEPENDENCE TESTING

The following simple “redundancy” example il-
lustrates that weights-of-evidence modeling can be
sensitive to violations of conditional independence.
Suppose that binary map layer Ahas positive weight
W+(A) = 2 and that its pattern coincides with that of
map layer B. It follows that W+(B) = 2 as well. A
situation of this type could, for example, arise when
contour maps of trace elements are used to predict
occurrences of mineral deposits genetically related to
several trace elements.

Application of weights-of-evidence then would
yield posterior logits that are too large in places where
Aand B are present. When the unit cell area is small,
this implies that the corresponding posterior proba-
bilities are e2 = 7.4 times as large as they should be.
Clearly, situations of this type should be avoided in
practical applications.

In the past, two types of conditional indepen-
dence tests have been applied: (1) contingency table



P1: FLT

Natural Resources Research (NRR) PP670-nrr-455005 November 15, 2002 15:25 Style file version Nov. 07, 2000

Conditional Independence Test for Weights-of-Evidence Modeling 251

Table 1. Contingency Table for 2× 2 Conditional Independence
Test

Observed frequencies Expected frequencies

A ∼A Sum A ∼A Sum

B nAB n∼AB nB nA nB n∼A nB nB

∼B nA∼B n∼A∼B n∼B nA n∼B n∼A n∼B n∼B

Sum nA n∼A n nA n∼A n

tests, and (2), the overall or “omnibus” test possi-
bly supplemented by a Kolmogorov-Smirnov test for
goodness-of-fit. If one or more tests fail in a practi-
cal application, new types of map layers can be de-
fined so that there is approximate conditional inde-
pendence verified by new conditional independence
tests. In the preceding example of map layers for in-
tercorrelated trace elements, trace elements would be
combined into a single index, for example by factor
analysis, prior to combination with other, condition-
ally independent, map layers.

Contingency Table Tests

Conditional independence of two map layers A
and B can be evaluated by the chi-squared test or
the G2-test for goodness-of-fit. Table 1 shows ob-
served and expected frequencies for the 2× 2 con-
tingency table for a pair of binary variables XI (I =
A, ∼A) and XJ (J = B, ∼B) (see previous section).
All frequencies in Table 1 are independent of unit
cell size provided that unit cell area is sufficiently
small.

In the chi-squared test, the observed frequen-
cies are changed slightly when the continuity correc-
tion is applied. This well-known refinement consists of
adding 0.5 to observed frequencies that are less than
expected and subtracting 0.5 from those exceeding ex-
pected frequencies. Adding primes as superscripts for
this correction, it is possible to compute

X2 = n{n′A∼Bn′∼AB − n′ABn′∼A∼B}
nAn∼AnBn∼B

This test statistic is distributed as χ2 with a single de-
gree of freedom if the two binary variables are condi-
tionally independent. A different test statistic is used
for the G2-test but the two tests generally produce
similar results. A possible disadvantage of both tests
is that all four expected frequencies of Table 1 should
be at least 5 before these tests can be applied.

The theory of the preceding test and its exten-
sions to discrete multivariate statistics are given in

several textbooks including Bishop, Feinberg, and
Holland (1975). Possible interrelationships between
several map layers can be investigated by model com-
parison. It should be kept in mind, however, that in
the resulting test statistics, the map layers are con-
sidered only at the points of occurrence of deposits.
Consequently, the number of degrees of freedom of
the chi-squared value is 1 instead of 2 for a (2× 2× 2)
contingency table, arising when two binary variables
are tested for conditional independence with respect
to a third binary variable in a nonspatial applica-
tion of discrete multivariate analysis (cf. Agterberg,
1992).

Overall or “Omnibus” Test

The end product of weights-of-evidence model-
ing is a posterior probability map. If p binary patterns
are considered, and there are no missing data, unit
cells with the same posterior probability form classes
that belong to one of 2p possible “unique” conditions.
Suppose that T represents the sum of posterior prob-
abilities for all unit cells in the study area. Ideally, T
should be equal to n representing total number of de-
posits. In practical applications, T may exceed n. It
can be assumed that T > n may be because of lack of
conditional independence of map layers. This is the
rationale of the overall or so-called “omnibus test”
(Kemp, Bonham-Carter, and Wright 1999) for condi-
tional independence. For example, in Bonham-Carter
(1994, p. 316), it is argued that T should not exceed n
by more than 15%.

The cumulative frequency distribution of the pos-
terior probabilities can be subjected to a Kolmogorov-
Smirnov test for goodness-of-fit. This test normally
applies to situations in which the maximum observed
and expected cumulative frequencies are both equal
to 1. If the statistical model for the frequency dis-
tribution is correct, the absolute value of the largest
difference between calculated and observed cumula-
tive frequencies should not exceed the Kolmogorov-
Smirmov test statistic for which statistical tables are
available.

Agterberg and others (1993) applied the
Kolmogorov-Smirnov test after dividing all cumu-
lative frequencies by n. In weights-of-evidence ap-
plications, the maximum difference then generally
becomes equal to (T/n− 1) for the unique condi-
tion with the largest posterior probability. This is be-
cause the unique condition with the largest posterior
probability in the study area usually has positive
weights for all map layers considered. If two or more
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of these map layers are not conditionally independent,
this results in overestimation as illustrated in the “re-
dundancy” example at the beginning of this section. It
is not known to what extent the Kolmogorov-Smirnov
test statistic can be applied in that situation.

Suppose that T denotes a random variable for
the sum of all posterior probabilities. It would be
better to first test the hypothesis that ET = n before
the Kolmogorov-Smirnov test is applied to cumula-
tive frequencies multiplied by n/T. This correction
would force the maximum difference to become equal
to zero thus allowing application of the Kolmogorov-
Smirnov test. This procedure would be used only
after acceptance of the hypothesis of conditional
independence.

NEW CONDITIONAL INDEPENDENCE TEST

For a single map layer A, the binary random
variable XI(I = A, ∼A) results in posterior proba-
bilities EXA= P(d | A) = nA/NA when A is present,
and EX∼A= P(d | ∼A) = (NA− nA)/NA when A is
absent. The expected value of T representing the sum
of all posterior probabilities in the study area satisfies

ET = NAEXA+ N∼AEX∼A

= NAP(d | A)+ N∼AP(d | ∼A)

It follows that

ET = NA{nA/NA} + N∼A{n∼A/N∼A} = n

The variance is

σ 2(T) = N2
Aσ

2(XA)+ N2
∼Aσ

2(X∼A)

The following results for the sum the four posterior
probabilities resulting from two binary patterns Aand
Bare valid only if the two map layers are conditionally
independent of the deposits:

ET = NABP(d | AB)+ NA∼BP(d | A∼ B)

+ N∼ABP(d | ∼AB)+ N∼A∼BP(d | ∼A∼B)

= nAB + nA∼B + n∼AB + n∼A∼B = n

σ 2(T) = N2
AB σ

2(XAB)+ n2
A∼B σ

2(XA∼B)

+ N2
∼AB σ

2(N∼AB)+ N2
∼A∼B σ

2(X∼A∼B)

In general, ET = n for the sum of 2p terms of the form
NI J K . . . P(d | I J K . . .) = nI J K... if the p binary map
layers with (I = A, ∼A; J = B, ∼B; K = C, ∼C; . . .)
are conditionally independent of the deposits. The
corresponding variance is the sum of all possible terms
of the form N2

I J K...σ
2(XI J K...).

In general, the sum of all posterior probabili-
ties T is probably greater than n. The hypothesis of
conditional independence is equivalent to assuming
ET = n. This hypothesis can be tested because an es-
timate of σ 2(T) is available as well.

Theoretically, it is possible that T is less than n
for map layers that are not conditionally independent.
However, this situaiton is unlikely to arise in practice
because map layers are selected in the first place be-
cause they are believed to provide positive indicators
for the presence of mineral deposits. It is more likely
that indicators of this type are correlated positively
with respect to mineral occurrences than that they
would be negatively correlated.

For this reason, a one-tailed significance test
should be used. Approximate normality of T can be
assumed if s(T) representing the standard deviation
of T is significantly less than T itself. For acceptance
of the hypothesis of conditional independence, the
difference T-n should be less than 1.645·s(T) with a
probability of 95%, or less than 2.33·s(T) with a prob-
ability of 99%.

EXAMPLE OF APPLICATION

This example is based on results previously de-
scribed in Agterberg and others (1993) for 13 occur-
rences of hydrothermal vents on the ocean floor, along
the central axis of the East Pacific Rise near 21◦N.
Map layers and posterior probabilities for the area
(Agterberg and others, 1993, figs. 1–4) were based on
material originally published by Ballard and others
(1981).

Table 2 shows weights and contrasts for five bi-
nary patterns. The contrast C is the difference be-
tween positive and negative weight. It measures de-
gree of correlation between point pattern and binary
map, and can be tested for statistical significance.
Yule’s coefficient of association for binary variables is
a standardized form of the contrast. The correlation

Table 2. Hydrothermal Vents on East Pacific Rise Example (From
Agterberg and others, 1993). Weights and Contrasts With Standard

Deviations for Five Binary Patterns

Map layer W+ s(W+) W− s(W−) C s(C)

Age 2.251 1 −1.232 0.29 3.481 1.041
Topography 2.037 1 −0.811 0.29 2.848 1.041
Rock Type 0.632 0.41 −0.338 0.378 0.97 0.558
Contact 2.259 0.41 −0.57 0.378 2.829 0.561
Fissures 0.178 0.448 −0.097 0.354 0.275 0.571
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between fissures and hydrothermal vents is not statis-
tically significant.

The first map layer (age) listed in Table 2 was
based on relative amount of recent sediments cov-
ering the basaltic rocks. These volcanics are of two
types: sheet flows and pillow flows forming the bi-
nary pattern called “rock type.” Because the 13
vents occur near the linear spreading center, they
are positively correlated with youngest volcanics.
The vents are slightly correlated with occurrence of
pillow flows (and negatively correlated with sheet
flows).

The map layer for “contact” was based on max-
imum contrast proximity to the contact between
youngest sheet flows and pillow flows. Its pattern
strongly resembles the pattern for “age.” There is
probably significant lack of conditional independence
of “contact” and “age.” Because of small sample size
(n = 13) it is not possible to use the contingency table
tests.

Although there are significant changes in depth
of ocean floor below sea level, 12 of the 13 vents
occur within the relatively narrow zone of 2590 m
±10 m water depth. This is probably for hydrostatic
reasons. “Topography” provides a map layer that is
probably conditionally independent of the other map
layers.

It can be concluded that the most likely loca-
tions of hydrothermal vents in this area are in the
immediate vicinity of the linear spreading center, at
about 2590 m water depth, and in the vicinity of pillow
flows.

The study area is 3.7534 km2. Setting this equal
to 37,534 unit areas results in prior probability of
(13/37,534 =) 0.00034635 per 10 m × 10 m cell. Con-
sequently, the prior logit is −7.9677. The sum of all
five positive weights in Table 2 is 7.357. Addition of
this total weight to the prior logit yields posterior
logit of −0.6107 that can be converted into a poste-
rior probability of 0.3519. This would indicate that the
most favorable cell in the 5-layer model is approx-
imately 1000× more likely to contain a hydrother-
mal vent than when the prior probability would be
used only.

However, the sum of positive weights for the first
3 map layers of Table 2 is 4.920. This 3-layer model
would result in posterior probability of 0.0453 that is
only about 130× greater than prior. Posterior prob-
abilities resulting from the 5-layer and the 3-layer
model obviously are different.

Figure 1 shows observed and estimated num-
ber of hydrothermal vents as a function of posterior

probability for the 5-layer model. The sum of all pos-
terior probabilities (T) is 37.59 and T-n = 24.59. The
sum of variances of expected vent frequencies for all
unique conditions is s2 (T) = 109.42. Consequently,
s(T) = 10.46. Multiplication by 2.33 gives 99% con-
fidence limit of 24.37 for T-n = 24.59 indicating that
the conditional independence hypothesis should be
rejected for the 5-layer model.

On the other hand, the sum of probabilities for
the 3-layer model is T = 14.05 with s(T) = 6.45. The
difference T-n = 1.05 is not statistically significant
and the conditional independence hypothesis can be
accepted for the 3-layer model. Details of how T and
s2(T) were estimated for the 3-layer model are pro-
vided in the next section.

EXAMPLE OF ESTIMATION OF T AND S 2(T)

The 3-layer model was analyzed in a separate ex-
periment for a slightly larger study area of 3.985 km2.
Separate areas for eight unique conditions are listed
in Table 3. The first column shows these unique con-
ditions with “1” for presence and “2” for absence of
a binary pattern.

The area of the unit cell was set equal to 0.01 km2

in this experiment. With weights and standard devi-
ations similar to those listed in Table 2 this resulted
in the posterior probabilities Pf with standard devi-
ations s(Pf ) shown in columns 3 and 4 of Table 3.
Multiplication of each Pf by area (number of unit
cells) of its unique condition results in the eight pre-
dicted vent frequencies NI J K Pf . Their sum provides
the estimate T = 14.05 used in the previous section.
The corresponding variance s2(T) is the sum of the
eight values of N2

I J K s2(Pf ) listed in the last column
of Table 3.

Table 3. Estimation of T and s2(T) for 3-Layer Model; I – age,
J – Topography, K – Rock Type; N = 100×Area

IJK Area (km2) Pf s(Pf ) NI J K Pf N2
I J Ks2(Pf )

222 1.344 0.0003 0.0005 0.0403 0.0045
212 0.9007 0.0057 0.0065 0.5134 0.3428
221 0.4351 0.0008 0.0013 0.0348 0.0032
122 0.4187 0.0111 0.0126 0.4648 0.2783
112 0.3415 0.1709 0.0907 5.8362 9.5939
211 0.2223 0.0154 0.0176 0.3423 0.1531
111 0.1771 0.3604 0.153 6.3827 7.3421
121 0.1456 0.0297 0.336 0.4324 23.9332

Sum 3.985 14.0470 41.6511
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Figure 1. Hydrothermal vents on East Pacific Rise example. Estimated and observed numbers of vents in 5-layer model (adapted from
Agterberg and others, 1993, Fig. 2c).

CONCLUDING REMARKS

Conditional independence of all map layers im-
plies that the sum of posterior probabilities (T) is
equal to total number of discrete events (= n). In
practical applications, T generally exceeds n and
the difference increases when additional map lay-
ers are included, indicating possible lack of con-
ditional independence. In the past, this result was
used in the overall or “omnibus test” for conditional
independence.

This paper provided formal proof that the ex-
pected value of the sum of all posterior probabili-
ties is equal to total number of discrete event if all
map layers are conditionally independent. Estima-
tion of s(T) representing the standard deviation of
T allows performance of a one-tailed test to check
whether T-n is significantly greater than zero. This
new test is exact and simpler to use than other tests
including the Kolmogorov-Smirnov test and various
chi-squared tests adapted from discrete multivariate
statistics.

The new test was applied to occurrence of 13 hy-
drothermal events along the East Pacific Rise indi-
cating that the conditional independence hypothesis
can be accepted for a 3-layer model (age, topography,
and rock type). This hypothesis must be rejected for
a 5-layer model (addition of layers for proximity to
contact between youngest pillow and sheet flows and
proximity to fissures). It is noted that this conclusion
was drawn previously on the basis of the Kolmogorov-
Smirnov test approximation (Agterberg and others,
1993). It is also in accordance with the informal 15%
rule of the earlier version of the omnibus test.

This indicates that the new test provides good re-
sults in situations that contingency table tests do not
apply because sample size is too small. For larger sam-
ples (e.g. n = 100), and many map layers, it remains
easy to apply the new omnibus test. During estimation
of the standard deviation s(T) it is tacitly assumed that
several approximate formulas produce valid results.
Possible shortcomings resulting from small sample
size (e.g. approximations based on asymptotic theory)
are diminished when sample size (n) is increased.
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If the map layers are not conditionally indepen-
dent, it is likely that the standard deviation s(T) will be
underestimated because positive association would
result in increased variance. The effect of underes-
timation of s(T) on the significance test would be that
the hypothesis of conditional independence is more
likely to be rejected than accepted.

Other approaches may not be subject to prob-
lems associated with lack of conditional indepen-
dence. For example, in logistic regression the condi-
tion T = n is satisfied automatically and need not be
verified. However, logistic regression generally pro-
duces weights with greater standard deviations be-
cause of approximate linear relationships between
map layers, lack of transparency of calculations be-
cause an iterative process is used for calculating the
coefficients, and it is more difficult to cope with miss-
ing data.

The problem that T may exceed n in weights-of-
evidence is unrelated to possible existence of undis-
covered mineral deposits. The purpose of using this
method in mineral-potential mapping is to locate new
target areas for further exploration. Coloring the pos-
terior probability map may provide a simple way to
achieve this objective. Areas with high density of
known deposits and low-density target areas would
have the same color assigned to polygons with the
largest posterior probabilities.

If there are undiscovered deposits in a region, it
is likely that the prior probability is underestimated.
On average, the weights are not be affected by this
type of bias, provided that associations between de-
posits and map layers remain the same for known and
unknown deposits. Presence of undiscovered deposits
in the study area would imply underestimation of all
posterior probabilities Pf by approximately the same
factor if Pf ¿ 1.
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