
Special Software Development for Neural Network and Fuzzy Clustering
Analysis in Geological Information Systems

by

Prof. Carl G. Looney and Han Yu
Computer Science Department

University of Nevada
Reno, NV 89557

Executive Summary.

These algorithms perform: i) a new type of fuzzy clustering to partition data sets into classes that
either contain a mineral or do not; and ii) a new type of neural network training on mineral data
sets so as to recognize the presence or absence of a mineral of interest. The software module was
developed for use with the GIS ARCView software package, bit it can be run independently as
well.

1. Introduction

The purpose of this project was to develop a software module for use with Arc-SDM.
The module implements: i) a fuzzy clustering algorithm for unsupervised (self-organizing)
classification of data; and ii) a neural network algorithm for training on known data so that it
could then classify unknown data. Both algorithms are new and are not yet in use in the technical
community. The software module performs data analysis in combination with Arc-SDM and with
other software from other sources. This project, however, concerns only the development of the
software to perform the fuzzy clustering on data and to train and apply radial basis functional link
net neural networks to data, where the data was to be in the format required for Arc-SDM.

The programming was performed by Mrs. Xiangyin Yin and Mr. Han Yu, who worked as
research assistants under the direction of Prof. Carl G. Looney in the Computer Science
Department, University of Nevada, Reno, NV 89557.

This report includes the description of the two algorithms, respectively, for the fuzzy
clustering and for the radial basis functional link net. It also includes the operation of the
software.

2. The Fuzzy Clustering Algorithm

2.1 Classification and Clusters. The classification of a set of entities by a learning system based
on their vectors of features (measured attribute values) is a powerful tool for acquiring
knowledge from observations stored in data files. Given a set of feature vectors, a self-
organizing process clusters them into classes with similar feature values, either from a top-down
(divisive) or bottom-up (agglomerative) process. Classes can also be learned under a supervised
training process where each input vector is labeled and the process parameters are adjusted until
the process output for each input vector matches the target output (label, or codeword). Artificial
neural networks learn with labeled data under supervised learning. In this section we develop an
agglomerative self-organizing (unsupervised), or clustering, approach.

The major problems in clustering are: i) how do we find the number K of clusters for a
given set of feature vectors {x(q): q = 1,...,Q} when K is unknown? ii) how do we assess the
validity of a given clustering of a data set into K clusters? iii) how do we permit clusters to take
their own natural shape rather than forcing them into the shapes of normed unit balls? iv) how
do we assure that the clustering is independent of the order in which the feature vectors are
input? and v) how do we assure the independence of the order in which clusters are merged? In
what follows, {x(q): q = 1,...,Q} is a set of Q feature vectors that is to be partitioned (clustered)
into K clusters {Ck: k=1,...,K}. For each kth cluster Ck its prototype (or center) is designated by
c(k). The dimension of the feature vectors x(q) = (x1

(q),...,xN
(q)) and centers c(k) = (c1

(k),...,cN
(k)) is N.

The feature vectors are standardized independently in each component so that the vectors belong
to the N-cube [0,1]N.

2.2 Clustering Validity. A ball of uniformly distributed vectors has no cluster structure. But if a
set of vectors falls into multiple subsets that are compactly distributed about their centers and the
centers are relatively far apart, then there is strong cluster structure. We say that such clusters are
compact and well-separated. These are criteria for well clustered data sets when the clusters are
contained in nonintersecting normed balls. Not all data sets have strong cluster structure.

A clustering validity measure [12, 19] provides a goodness-of-clustering value. Some
general measures for fuzzy clusters are the partition coefficient (PC), the classification entropy
(CE) and the proportional exponent (PE). The uniform distribution functional (UDF) is another
measure that was proposed in 1982. These are not as independent of K as is the Xie-Beni [19]
clustering validity that is a product of compactness and separation measures. The compactness-
to-separation ratio � is defined over K clusters by

 � = {(1/K)�(k=1,K) 1k
2}/{Dmin}2; �k

2 = �(q=1,Q) wqk�x
(q) - c(k)�2, k = 1,...,K (1)

where Dmin is the minimum distance between the prototypes (cluster centers) and �k
2 is the

(fuzzy) weighted variance of the kth cluster over all Q vectors (even those in other clusters, which
have very little influence). A larger Dmin value means a lower reciprocal value. Any �k

2 is smaller
for more compact clusters. Thus a lower value of � means more compactness and greater
separation.

3

We modify the Xie-Beni fuzzy validity measure by summing over only the members of
each cluster rather than over all Q exemplars for each cluster. We also take the reciprocal � = 1/�
so that a larger value of � indicates a better clustering and we call � the modified Xie-Beni
clustering validity measure.

2.3 The New Fuzzy Clustering Algorithm. The weighted fuzzy expected value (WFEV) of a set of
real values x1,..,xP was defined by Schneider and Craig [15] to be a prototypical value that is
more representative of the set than is either the average or the median. It uses the two-sided
decaying exponential but we use the bell shaped Gaussian function instead in Equation (3) below
because it is a canonical fuzzy set membership function for the linguistic variable
CLOSE_TO_CENTER. After computing the arithmetic mean µ(0) of a set of real values x1,..,xP as
the initial center value, we employ Picard iterations to obtain the new value

 µ(r+1) = �(p=1,P) �p
(r) xp, (�

2)(r+1) = �(p=1,P) �p
(r) (xp - µ

(r))2 (2)

 �p
(r) = exp[-(xp - µ

(r))2/(2�2)(r)] / {�(m=1,P) exp[-(xm - µ(r))2/(2�2)(r)]} (3)

The value µ = µ(�) to which this process converges is our modified weighted fuzzy
expected value (MWFEV). Usually 5 to 8 iterations are sufficient for 4 or more digits of
accuracy. For vectors the MWFEV is computed componentwise. The �2 in Equations (2, 3) is the
weighted fuzzy variance (WFV). It changes over the iterations also and an initial value (for the
spread parameter �) can be set at 1/4 of the average distance between cluster centers. An open
question currently is that of guaranteed convergence of the MWFEV and WFV. Our preliminary
investigation shows empirically that the WFV can oscillate with increasing iterations, but that a
subsequence converges (this is true of the fuzzy c-means weights). Therefore we substitute a
fixed nonfuzzy mean-square error (variance) for the WFV in our algorithm.

The MWFEV method weights outliers less but weights the central and more densely
distributed vectors more heavily. It provides a more typical vector to represent a cluster. Figure 1
at the end of Section 2 shows an example of the MWFEV versus the mean and the median for a
simple 2-dimensional example. The 5 vectors are (1,2), (2,2), (1,3), (2,3) and (5,1). The outlier
(5,1) influences the mean (2.2,2.2) and the median (2,2) too strongly. The MWFEV vector
(1.503,2.282), however, is influenced only slightly by the outlier in the y-direction and even less
in the x-direction.

We first standardize the Q feature vectors of a sample by affinely (linearly plus
translation) mapping all Q values of the same component into the interval [0,1] (we do this
independently for each nth component over n = 1,...,N). The standardized vectors are thus in the
unit N-cube [0,1]N. We circumvent the problem that the order of input vectors will affect the
clustering by using a large number K of uniformly distributed initial prototypes to spread out the
initial cluster centers.

4

To cluster the sample {x(q): q=1,...,Q} we employ a relatively large initial number K of
uniformly randomly drawn prototypes to start with a large number of initial cluster centers. Then
we thin out the prototypes that are not useful and do our special fuzzy clustering, followed by
fuzzy merging. The initial large number K and the thinning to a much smaller number ensures
that we find reasonable centers for all clusters. The large initial K is empirically derived as
shown in Table 1 by K = max{6N + 12log2Q, Q}. For example, for N = 32 and Q = 256 the
computed K would be 288. In the main loop we compute the fuzzy weights and the MWFEV
(componentwise) for each kth cluster to obtain the prototype c(k). We also compute the mean-
squared error �k

2 for each kth cluster. Then we again assign all of the feature vectors to clusters
based on the minimum distance assignment. This process is repeated until the fuzzy centers do
not change. The fuzzy clustering algorithm follows.
���

 Fuzzy Clustering Algorithm
Step 1: I = 0; input I0; /*Set current and max. iteration

numbers. */
 input N and Q; /*N = no. components; Q = no. feature vectors.

*/
 compute K; /* K = max{ 6N + 12 log2 Q, Q}. */

 for q = 1 to Q do input x(q); /*Read in Q feature vectors in file to be
clustered.*/

 for k = 1 to K do /* Generate uniform random prototypes in [0,1]N

.*/
 c(k) = random-vector();

 for k=1 to K do count[k] = 0; /*Initialize number of vectors in each cluster*/
 � = 1.0/(K)1/N; /*Threshold for prototypes being too close. */

Step 2: repeat
 dmin = 9999.9; /*Parameter for smallest distance between

centers. */
 for k=1 to K-1 do /*Check all distances between prototypes */
 for kk=k+1 to K do /*to obtain minimum such distance. */

 if (�c(k) - c(kk)� < dmin) then
dmin = �c(k) - c(kk)�;
kmin = kk; /*Index for possible deletion. */

 if (dmin < �) then /*If deletion criterion is met then */
for k= kmin to K-1 do /*remove prototype too close to another

one */
 c(k) = c(k+1); /*by moving all higher prototypes down

one place. */
K = K-1; /*Decrement K upon each removal. */
again = true; /*Do process again if prototype is too close. */

 else again = false; /*Do not repeat if smallest distance is too large
*/

 until (again = false); /*in which case “again” is a false boolean
variable. */

5

Step 3: for i = 1 to 20 do /*Do 20 k-means iterations. */
for q = 1 to Q do /*Assign each x(q) via nearest prototype c(k). */
 k* = nearest(q); /*c(k*) is nearest prototype to x(q). */
 clust[q] = k*; /*Assign vector x(q) to cluster k*. */
 count[k*] = count[k*]+1; /*Update count of cluster k*. */

 for k=1 to K do
 c(k) = (0,...,0); /*Zero out all prototypes (centers) for averaging.

*/
 for q = 1 to Q do /*For each feature vector, check if it belongs */
 if (clust[q] = k) /*to cluster k, and if so, then add it to the sum*/
 c(k) = c(k) + x(q) /*averaging to get new prototype

(componentwise). */
 c(k) = c(k)/count[k];

Step 4: eliminate(p); /*Eliminate clusters of count � p (user given p).
*/

Step 5: for k = 1 to K do /*Begin fuzzy clustering. */
fuzzyweights(); /*Use Eqn. (16), compute fuzzy wts. in kth

cluster. */
�k

2 = variance(); /*Get variance (mean-square error) of each
cluster. */

c(k) = fuzaverage(); /*Fuzzy prototypes (Eqn. 15a. */
 for k=1 to K do count[k] = 0; /*Zero out counts for reassignment.*/

Step 6: for q = 1 to Q do /*Assign each x(q) to a Ck via minimal distance.
*/

k* = nearest(q); /*Assign x(q) to nearest c(k*). */
clust[q] = k*; /*Record this with index clust[q] = k*. */
count[k*] = count[k*]+1; /*Increment count for assigned vector. */

 I = I + 1; /*Increment iteration number. */
Step 7: if (I > I0) then /*Check for stopping criterion. */

compute �; /*Compute modified Xie-Beni validity measure.
*/

merge(); /*Call function to merge, eliminate empty
results. */

stop; /*Stop if stop_criterion = TRUE*/
 else go to Step 5; /*or if number of iterations is exceeded, else

repeat loop*/
��

��

 Elimination Algorithm (eliminate(p) in Step 4) /*For each cluster k, eliminate it if its */
 for k = 1 to K-1 do /*count � p (empty clusters also). */
 if (count[k] � p) then /*First, test for size < p. If so, then move*/

 for i = k to K-1 do /*all count indices down by 1. */
 count[i] = count[i+1];

6

 for q = 1 to Q do /*Move assignment indices down by 1 */
 if (clust[q] = i+1) then /*for any vector in kth cluster. */
 clust[q] = i;

 K = K - 1: /*Decrement no. clusters on elimination. */
 if (count[K] � p) then K = K - 1; /*Check to eliminate last cluster center. */

���

2.4 Fuzzy Merging of Clusters. We first find the R = K(K-1)/2 distances {d(r): r = 1,...,R}
between unique pairs of prototypes. For each such distance, the indices k1(r) and k2(r) record the
two cluster indices for which the distance d(r) was computed, ordered so that k1(r) < k2(r). Each
rth prototypical pair k1(r) and k2(r) is merged only if the following condition is met: d(r) < �D,
where D is the WFEV of all of the distances {d(r): r = 1,...,R} and � satisfies 0.0 < � < 1.0, where
� = 0.5 is a good empirically derived first trial value). There are optional criteria as well. One is:
the ball of radius (�k1(r) + �k2(r))/2 centered on the midpoint vector y = ½[c(k1(r)) + c(k2(r))] between
the cluster centers contains at least 20% of the vectors in each cluster (the default percentages can
be changed).

���

 Merging Clusters (merge())
Step 1: r = 1; /*For every one of the K(K-1)/2 unique */

 for k = 1 to K-1do /*pairs of prototypes, get the distance*/
 for kk = k+1 to K do /*between them and get the indices for*/

d[r] = �c(k) - c(kk)�; /*the prototypical pairs (k1() and k2(). */
k1[r] = k; k2[r] = kk;
r � r + 1; /*Increment r (rth pair), 1 � r � R=K(K-1)/2. */

 for k=1 to K do Merge[k] = 0; /*Zero out merge indices. */
Step 2: D = MWFEV({d[r]}r); /* Find MWFEV of the d(r) values. */
Step 3: r* = 1;

 for r = 2 to K(K-1)/2 do /*Over all inter-prototype distances */
if d[r] < d[r*] then r* = r; /*find a pair with least distance for merge test.

*/

 [Step 4: K1 = 0; K2 = 0; /*Optional: Zero out counters 1 and 2. */
 y = ½[c(k1[r*]) + c(k2[r*])]; /*Compute midway vector between prototypes.

*/
 � = �k1(r*) + �k2(r*) ; /*Compute 1 for ball centered at y. */
 for q=1 to Q do /*Find feature vectors in overlapping ball. */

if (�x(q) - y� < �) then /*x(q) must be close to y and also be in either */
 if (clust[q] = k1[r*]) then K1 = K1+1; /*cluster k1(r*) or cluster k2(r*).

*/
 if (clust[q] = k2[r*]) then K2 = K2+1;

 P1 = K1/count[k1[r*]]; /*Compute proportion of Ck1(r) points in ball, */

 P2 = K2/count[k2[r*];] /*proportion of Ck2(r) points in ball (optional).*/
Step 5: if (d[r*] < �D) /*Test merging criteria (try � = 0.5 first). */

7

[AND ((P1 �0.2 AND P2 �0.2)] /*Optional criteria for merging. */
for q = 1 to Q do /*Check each qth feature vector: is it in Ck2(r*)?

*/
 if (clust[q] = k2[r*] then /*If so, then reassign it to Ck1(r*) (Class k1(r*)).

*/
 clust[q] = k1[r*]; /*k2(r) > k1(r) is always true for same r.

*/
 count[k1[r*]] = count[k1[r*]]+1; /*Increment count of Class k1(r)*/
 count[k2[r*]] = count[k2[r*]] - 1; /*Decrement count of Class k2(r)*/
Merge[k2[r*]] = [k1[r*]]; /*Record merger. */
z(k2[r*]) = c(k2[r*]); /*Save old prototype. */
stop_criterion = false;

 else
stop_criterion = true;

Step 6: eliminate(0); /*Eliminate empty clusters (p = 0). */
 if (stop_criterion) stop; /*Test for stopping(no previous merging). */
 else goto Step 1; /*If no stopping then repeat merge test. */

���

This algorithm merges successfully with or without the optional criteria in Steps 4 and 5.
When cluster k2(r) is merged with cluster k1(r) we record that as Merge(k2(r)) = k1(r). It is
always true that k1[r] < k2[r].

2.5 Computer Test Results. To show the affects of ordering on the standard (Forgy [3] and
MacQueen [10]) k-means algorithm we used the data file testfz1a.dta shown in Figure 2 (at the
end of Section 2). The numbers 1 through 15 are the vector indices that give their order of
presentation to the algorithm. The file testfz1b.dta was formed by exchanging feature vector
number 1 with feature vector number 8 in the ordering. With K = 5 the different results are
shown in Figures 3 and 4. Other changes in the ordering caused yet other clusterings. The shown
clusterings are not intuitive. Our merging algorithm applied to the clusters in both Figures 3 and
4 with � = 0.5 yielded the identical results shown in Figure 5, which agrees more with our
intuition of the classes. It is known that the k-means algorithm convergs to a local minimum
[16], but it may not be a global minimum.

Figure 6 shows the respective results of our new fuzzy clustering and fuzzy merging
algorithms on the file testfz1a.dta. The results were the same for testfz1b.dta. The modified Xie-
Beni validity values were also identical for the two files. This, and other tests, showed that the
strategy of drawing a large number of uniformly distributed prototypes and then thinning them
out to achieve a smaller number of more sparsely uniformly distributed prototypes prevented the
order of inputs from affecting the final clustering in these cases. The initial K was 59, which was
reduced to 8 by eliminating empty clusters and then to 5 with p = 1. K was reduced to 3 by
merging with � = 0.5. Figure 7 shows the K = 5 results.

8

The second data set is Anderson’s [1] well-known set of 150 feature vectors of that are
known to be noisy and nonseparable. The data is labeled as K = 3 classes that represent 3
subspecies (Sestosa, Versicolor and Virginica) of the iris species. The given sample contains 50
labeled feature vectors from each class for a total of Q = 150. The feature vectors have N = 4
features: i) sepal length; ii) sepal width; iii) petal length; and iv) petal width. Table 1 presents
the results of our complete fuzzy clustering and fuzzy merging algorithm. Our modified Xie-Beni
clustering validity measure shows that K = 2 classes are best, which coincides with the PC and
CE validity values, but the PE gave the best value for K = 3 rather than K = 2 [6]. This yields 3
votes out of 4 that K = 2 is the best number of clusters for the iris data set. We have reduced the
dimensions from 4 to 2 by taking ratios of petal width to length and sepal width to length, which
reduces the noise due to size of the specimen and the plotted results show clearly that there are
two classes. We note that in each clustering of Table 1 the Sestosa class contained the correct
number of 50 feature vectors (underlined) and the same weighted fuzzy variance (underlined).
The second class therefore has two subclasses that are not well separated.

Initially, our value for K was 150, but after deletions (due to close prototypes) it was
reduced to 57. K was further reduced to 16, 9 and then 7 by elimination with p = 2, 6 and 10,
respectively. After 40 fuzzy clustering iterations, the fuzzy merging with � = 0.5 reduced K to 4
as shown in Table 1. This was followed by further fuzzy merging with � = 0.66 to yield K = 3
clusters, and then with � = 0.8 to yield K = 2. The modified Xie-Beni validities are also shown in
Table 1.

Table 1. Fuzzy Clustering/Merging the Standardized Iris Data.
Data File No. Clusters K Validity Cluster Sizes �k

iris150.dta 4 0.5766 50, 40, 29, 31 0.192, 0.174, 0.182,
0.227

3 1.1520 50, 51, 49 0.192, 0.248, 0.215
2 5.8216 � 50, 150 0.192, 0.323

Our third data set is taken from Wolberg and Mangasarian [17, 18] at the University of
Wisconsin Medical School (also see [11]). We randomly selected 200 of the more than 500
feature vectors of that contained 30 features. As usual, we standardized each feature separately to
be in [0,1]. The vectors are labeled for two classes that we think are benign and malignant. One
label is attached to 121 vectors while the other is attached to 79 vectors. Our radial basis
functional link net (neural network) “learned” the two groups of 121 and 79 vectors “correctly”.
However, the vectors do not naturally fall precisely into these groups because of noise and/or
mislabeling (a danger in supervised learning with assigned labels). Table 2 shows that K = 2
(with sizes of 128 and 72) has the best clustering.

9

Table 2. Results on the Wolberg-Mangasarian Wisconsin Breast Cancer Data.
Data File No. Clusters K Validity Cluster Sizes
wbcd200.dta 5 0.1050 30, 53, 69, 22, 26

4 0.2575 35, 117, 22, 26
3 0.4114 54, 109, 37
2 1.1442 � 128, 72

The original K was 272, which was not reduced by deletion of close clusters with the
computed � (N = 30 features provided a large cube). Eliminations with p = 1, 7, and 11 and fuzzy
clustering and merging with � = 0.5, 0.66, 0.8 and 0.88 reduced K 5, 4, 3, and 2, respectively.
We conclude from the validity values that the data contains extraneous noise and does not
separate into compact clusters.

The fourth data set was geological data provided by Dr. Gary Raines of the US
Geological Survey. It is labeled for K = 2 classes. Each data vector has 4 feature values and a
fifth component that is the class label. There were Q = 70 feature vectors in the noisy sample
where the labels were made by humans who assigned 35 vectors to one class and 35 to the other.
Our neural network “learned” the labeled classes “correctly,” which shows that neural networks
learn what they are instructed to learn, whether or not it is correct. The clustering showed that the
data did not fall into equal sized classes.

For fuzzy clustering, the large initial number K of class prototypes was 98, but this was
reduced to 33 by deletion of close prototypes and then respectively reduced to 13 and 8 by
elimination with p =1 and p = 4. After 40 fuzzy clustering iterations, the fuzzy mergings with � =
0.5, 0.66, 0.8 and 0.88 brought it down to the respective K values of 7, 5, 3 and 2. Other paths
through the deleting, eliminating and merging also yielded the same results as are shown in Table
3..

Table 3. Results on the Geological Labeled Data.
Data File No. Clusters K Validity Cluster Sizes
geo70.dta 5 0.6267 14, 26, 7, 16, 7

3 1.0112 17, 13, 40
2 2.1545 � 51, 19

10

 Figure 1. MWFEV vs. mean and median.

 Figure 2. Original sample.

11

 Figure 3. K-means, original order, K = 5.

 Figure 4. K-means, 1 and 8 exchanged, K = 5.

12

 Figure 5. Fuzzy merging of k-means clusters.

 Figure 6. Fuzzy clustering/merging.

13

 Figure 7. New method, thinned to K=5.

3. The Radial Basis Functional Net Algorithm

3.1 Radial Basis Functions. Radial basis functions (RBFs) originated in 1964 as potential
functions [7]. The architecture and training algorithms for RBFNNs are simple and they train
more quickly than do multiple layered perceptron (MLP) networks. Unlike MLPs, they allow for
explanation when interpreted as fuzzy rule-based systems. We use RBFs with the random vector
functional link nets (RVFLNs) of Pao et al. [13] to obtain a more general and powerful radial
basis functional link net (RBFLN).

Figure 8 presents a radial basis function (RBF) on the vectors x in the plane. An RBF
with center vector at v is generally defined on N-dimensional feature vectors x by

y = f(x;v,�) = exp[-�x - v�2/(2�2)] (4)

with spread parameter �. The name radial indicates that all points x equidistant from v yield the
same value y. A number M of these radial basis functions can be centered on M center vectors so
that the circular balls of radius �m cover a bounded region of interest in the feature space. We
consider v as the prototype, or center, of a cluster of radius �-ball.

Figure 9 shows a slice through the center of an RBF and its receptive field, also called the
response region. Figure 10 presents an RBFNN that implements the composite mapping x � y �
z. Each node in the hidden (center) layer represents an RBF. An input feature vector x activates

14

(fires) a unique vector y. The weights {umj} at the nodes in the output layer are trained (adjusted)
to force the outputs z to approximate their targets t very closely (the targets are the labels that
humans supply). Generalized Gaussian basis functions with inverse covariance matrices C-1 may
be used in hidden nodes, especially where C is diagonal so that the diagonal of C-1 contains the
reciprocals of the diagonal elements of C. Such elliptical Gaussian RBFs are radial with respect
to the Mahalanobis distance (e.g., see [7]) and satisfy

y = exp[-(x-v)tC-1(x-v)] (5)

3.2 Radial Basis Functional Link Nets. The RBFNN of Figure 10 has an input layer of N nodes,
a hidden layer of M neurodes (neural nodes rather than biological neurons) and an output layer
of J neurodes. Feature vectors x are fed to the input layer. The respective outputs from the mth

neurode of the hidden layer and from the jth node of the output layer for the qth input exemplar
vector x(q) are

 ym
(q) = exp[-�x(q) - v(m)�2/(2�m

2)], zj
(q) = (1/M)[�(m=1,M)umjym

(q) + bj] (6a,b)

where m = 1,...,M and j = 1,...,J. The weights umj are gains on the lines from the hidden layer to
the output layer. The usual bias bj is included at each output node as shown in Figure 10 to model
translations.

Figure 11 presents three types of feedforward neural networks: a) a multiple layered
perceptron (MLP) with sigmoid functions in the hidden and output layers; b) an RBFNN with
RBFs in the hidden layer and sums in the output layer; and c) our radial basis functional link net
(RBFLN) with extra lines from the input nodes that connect directly to the output neurodes with
another set of weights {wnj} on these lines (wnj weights xn at the jth output node). This is an
RBFNN when the extra weights are set to zero.

15

Fig. 9. A radial basis function slice.Fig. 8. An RBF defined cluster center.

An RBFNN represents a nonlinear model while our RBFLN includes that nonlinear
model as well as an additive linear (affine) model due to the direct lines from the input to the
output nodes. Such parts of a transformation being modeled do not need to be approximated by
the nonlinear RBFNN. Thus the RBFLN is a more complete model of a general nonlinear
mapping than is the RBFNN. Multiple layered perceptrons (MLPs) [9] and RBFNNs, and thus
RBFLNs (which include RBFNNs) are universal approximators [4, 5, 14] and can approximate
any mappingof N-dimensional space into J-dimensional space as closely as desired provided that
a sufficiently large number of neurodes is used.

The training is done with a sample of Q input exemplar feature vectors and a set of Q
associated output target vectors, designated respectively by

{x(q): q = 1,...,Q}, {t(q): q = 1,...,Q}

The training of an RBFLN consists of the following two stages: i) initialization of the
centers, spread parameters and weights; and ii) weight and parameter adjustment to minimize the
output total sum-squared error (TSSE) E defined as the sum of the partial sum-squared errors
(PSSEs) in

E = �(q=1,Q){E(q)} = �(q=1,Q){�(j=1,J)(tj
(q) - zj

(q))2} (7)

The RBFLN output components differ from Equation (6b) for RBFNNs and are given by

zj
(q) = [1/(M+N)] {�(m=1,M)umjym

(q) + �(n=1,N)wnjxn
(q)} (8)

Training on the weights is extremely quick via steepest descent iteration per

16

Fig. 10. An RBFNN.

umj � umj - �1(�E/�umj) = umj + (�1/(M+N))�(q=1,Q)(tj
(q) - zj

(q))ym
(q) (9)

wnj � wnj - �2(�E/�wnj) = wnj + (�2/(M+N))�(q=1,Q)(tj
(q) - zj

(q))xn
(q) (10)

Each center and spread parameter can also be updated with steepest descent via

vn
(m) � vn

(m) - �3(�E/�vn
(m)) =

 vn
(m) + [�3/�m

2]�(q=1,Q){�(j=1,J)(tj
(q) - zj

(q))umj}ym
(q)(xn

(q) - vn
(m)) (11)

�m
2 � �m

2 - �4(�E/�(�m
2)) =

 �m
2 + (�4/�m

4)�(q=1,Q){�(j=1,J)(tj
(q) - zj

(q))umj}[ym
(q)�x(q) - v(m)�2] (12)

The learning rates �i absorb factors
of ½ in certain of Equations (9-12). Instead
of training over epochs with a single qth

input feature vector at a time as does
backpropagation, we input all Q feature
vectors and use steepest descent on the
TSSE error E rather than on each PSSE in
Equation (7). We call this technique
fullpropagation. [8, 9].Our adjustment of
each weight is influenced by all Q input
feature training vectors, which is more
stable and substantially more efficient than
epochal training.

3.3 The Full Training Algorithm for
RBFLNs. We present here the full training
(FT) algorithm for RBFLNs where the
centers and spread parameters are adjusted

as are the weights. The quick training (QT) algorithm is included in this upon omitting the
adjustments of the spread parameters and the RBF center vectors. FT and QT for RBFNNs are
included when the lines from the input nodes to the output nodes have zero weights (all wnj = 0).
QT is fast with a single global minimum [2].

17

Fig. 11. Three feedforward architectures.

 Full Training Initialization

Step 1: Given randomly ordered
exemplar training vectors {x(r): r =
1,...,R} of dimension N, select Q < R
vectors for training and save the R - Q
remaining ones for testing (validation) of
the training.

Step 2: Choose a large M so that there
are M small balls of radius � that
essentially cover the feature space. Put
v(m) = x(m) if M � Q, else put v(q) = x(q), q =
1,...,Q and draw the remaining M - Q
centers at random in the feature space.

Step 3: Compute initial � =
(1/2)[1/M]1/N and put �m = � for m = 1,...,M.

Step 4: Select all weights {umj} and {wnj} randomly between -0.5 and 0.5 for j = 1,...,J; m =
1,...,M; and
n = 1,...,N. Specify I iterations (e.g., I = 100).

 Full Training Iteration

Step 5: Compute ym
(q) from Equation (6a) for each m = 1,...,M and q = 1,...,Q.

Step 6: Compute zj
(q) from Equation (8) for each j = 1,...,J and q = 1,...,Q.

Step 7: Update weights in Equation (9) and adjust the learning rate �1 up on success, else down.

Step 8: Update weights in Equation (10) and adjust the learning rate �2 up on success, else
down.

Step 9: Update centers in Equation (11) and adjust the learning rate �3 up on success, else
down.

Step 10: Update spread parameter in Equation (12) and adjust the learning rate �4 up on success,
else down.

Step 11: Every Pth iteration (e.g., P = 20), put the test vectors through the network and record the
validation TSSE Eval. If Eval increases for the first time and all training and test vectors are

18

mapped into the correct targets, then stop.

Step 12: If I iterations are done, then stop, else go to Step 5 above.
Some refinements yield improved performance. Our en route technique [9] adapts the

learning rates {�k} of Equations (9 - 12) during iteration via an auto-adjustment mechanism that
speeds up convergence considerably. It multiplies a learning rate � by a number greater than 1,
say, 1.04, whenever a step of weight adjustments is successful in reducing the TSSE E, or else it
multiplies �k by a number less than 1, say 0.94. We let the learning rates �1 and �2 grow very
large, which yields a greedy algorithm (it takes chances to converge quickly, but may have to
recover if it jumps too far). In contrast, backpropagation algorithms must keep the learning rate
small, which causes slow convergence.

Training on all Q input feature vectors on each iteration (fullpropagation) also increases
the learning efficiency by eliminating thrashing (learning and unlearning over a sequence of
PSSEs in backpropagation). QT omits Steps 9 and 10 and loops from Step 12 back to Step 6
rather than Step 5 because the outputs of the RBFs do not need to be recomputed (there are no
changes in their values because neither the centers nor the spread parameters are changed). This
yields a dramatic increase in convergence speed.

3.4 Comparative Training Runs on Noisy Data. In all of our runs the learning rates �1 and �2
were adjusted every 10th iteration, as was the single spread parameter �. The centers were not
adjusted. Thus we used a modified QT for both RBFLN and RBFNN runs.

Table 4 presents the first data set that contains geological feature vectors from which
explorations can be made. There are R = 69 feature vectors of N = 4 dimensions and each has an
assigned target vector of a single component (0 or 1 for absence or presence of the desired
substance). There were 70 original vectors but we deleted one because it affected the training
adversely (it appears that it was too noisy and also had an incorrect label).

We selected 10 feature vectors at random to be used only for testing, which left Q = 59
feature vectors to be used for training. We used both M = 120 and M = 96 hidden neurodes for
the training runs on this data. Q feature vectors were used as RBF centers and M - Q centers were
drawn randomly as additional centers. The RBFLN was trained on the 59 training vectors for a
number P of iterations and the training total sum-squared error (TSSE) E was recorded. Then the
10 test vectors were put through the RBFLN and the validation TSSE Eval and classification
results were retrieved. This two step process of obtaining E and Eval was repeated for various
numbers of iterations. No training was done on the test vectors, which were used only to show at
what point the generalized learning was completed and the specialized learning [7] was starting
(to minimize Eval approximately).

19

Table 4. Some Geological Data

 x t x t
____________________ ___ ____________________ ___
0.6 0.6 0.2 0.2 1* 0.5 0.0 0.1 0.6 1
0.5 0.2 0.2 0.3 1 0.9 0.1 0.3 0.3 1
0.7 0.2 0.3 0.3 1 0.7 0.2 0.3 0.3 1
0.8 0.5 0.5 0.3 1* 0.8 0.5 0.5 0.3 1
1.0 0.6 0.7 0.3 1 1.0 0.7 0.7 0.3 1
1.0 0.7 0.7 0.3 1 1.0 0.7 0.7 0.3 1
1.0 0.3 1.0 0.3 1 1.0 0.5 0.9 0.3 1*
1.0 0.7 1.0 0.3 1 1.0 0.3 1.0 0.3 1
1.0 0.1 1.0 0.3 1 0.5 0.0 0.4 0.8 1
0.4 0.6 0.6 0.6 1 0.4 0.2 1.0 0.3 1
0.4 0.5 0.8 0.3 1* 0.6 0.0 0.2 0.3 1
0.4 0.0 0.4 0.8 1 0.8 0.2 0.1 0.6 1
0.8 0.1 0.1 0.6 1 0.4 0.7 0.1 0.5 1
0.5 0.2 0.1 0.3 1 0.4 1.0 0.4 0.3 1*
0.4 0.6 0.5 0.3 1 0.2 1.0 0.2 0.7 1
0.2 0.9 0.3 0.7 1 0.2 1.0 0.3 0.7 1
0.2 0.8 0.1 0.6 1 0.6 0.7 0.3 0.7 1
0.4 0.0 0.2 0.5 0* 0.2 0.0 0.1 0.2 0
0.2 0.0 0.1 0.5 0 0.2 0.9 0.1 0.2 0
0.2 0.0 0.1 0.8 0 0.2 0.0 0.1 0.2 0
0.2 0.0 0.1 0.5 0 0.2 0.0 0.1 0.5 0*
0.1 0.0 0.3 0.8 0 0.2 0.0 0.1 0.2 0
0.2 0.5 0.1 0.2 0 0.2 0.7 0.1 0.2 0
0.1 0.0 0.1 0.2 0 0.1 0.3 0.1 0.5 0
0.2 0.0 0.1 0.2 0* 0.2 0.4 0.2 0.2 0
0.2 0.0 0.2 0.2 0 0.2 0.0 0.1 0.8 0
0.9 0.0 0.1 0.8 0 0.2 0.0 0.1 0.5 0
0.1 0.0 0.1 0.5 0 0.1 0.6 0.1 0.2 0*
0.2 0.0 0.1 0.2 0 0.2 0.7 0.1 0.5 0
0.4 0.0 0.1 0.5 0 0.2 0.0 0.1 0.5 0
0.2 0.6 0.1 0.2 0 0.1 0.0 0.1 0.2 0
0.2 0.0 0.1 0.2 0* 0.7 0.0 0.2 0.8 0
0.4 0.0 0.2 0.5 0 0.2 0.0 0.1 0.2 0
0.2 0.4 0.1 0.8 0 0.2 0.0 0.1 0.5 0
0.2 0.0 0.1 0.8 0

 * used only for testing, not training

20

Table 5. RBFLN Runs on the Geological Data
__

Training Training Test
Iterations Error Test-Error 1² �1 �2 Misses Misses

M = 120
 150 1.2397 0.4407 0.0526 292.67 805.19 0 0
 180 1.0988 0.4107 0.0423 398.67 821.43 0 0
 200�� 0.9863 0.4023�� 0.0335 423.96 755.95 0 0��
 210 0.9247 0.4025 0.0304 543.09 838.00 0 0
 230 0.8342 0.4433 0.0265 499.80 771.20 0 0

M = 96
 130 1.2835 0.4869 0.0418 238.15 490.70 0 0
 140�� 1.2196 0.4770�� 0.0404 228.46 543.96 0 0��
 160 1.0713 0.5013 0.0587 130.92 202.02 0 0

Table 5 presents the RBFLN results. The training on 200 iterations for M = 120 hidden
neurodes gave the lowest TSSE Eval on the test feature vectors. The best generalized learning for
M = 96 took 140 iterations. The output values were considered to be incorrect (misses) if they
fell strictly between 0.42 to 0.58 or yielded the wrong class.

The famous iris data set contains 150 each of 4-dimensional feature vectors from 3
classes. We assigned the 3 target codewords (-1,0), (0,1) or (1,-1) for the respective classes 1, 2
and 3. These targets differ by at least one unit in each of two components. These feature vectors
are known to be noisy and very difficult to classify. We extracted 18 vectors for a test set and
trained on the remaining ones. Table 6 shows the results for our RBFLN and Table 7 shows the
results for an RBFNN, both on the iris data. Neither the RBFLN nor RBFNN could learn with M
= 60 RBFs, but did better as M increased until they did very well at M = 160. The RBFLN had a
smaller TSSE than did the RBFNN and learned with fewer iterations. Our fullpropagation MLP
had a difficult time on this data and did not learn all vectors correctly with any of M = 8, 12, 16,
20, 32 and 50.

Table 6. RBFLN Results on the Iris Data with M = 160

No. Iterations Error Test Error Training Misses Test Misses
 480 1.1933 0.3620 0 0
 500�� 1.1764 0 3603�� 0 0��
 520 1.1578 0.3617 0 0

21

Table 7. RBFNN Results on the Iris Data with M = 160
__

No. Iterations Error Test Error Training Misses Test Misses
 730 7.1979 0.6379 0 0
 750� 7.1130 0.6345� 0 0�
 770 7.0530 0.6356 0 0

The next data set is a subset of 200 normalized vectors taken from the Wisconsin Breast
Cancer Data (Mangasarian et al. [11] and Wolberg et al. [17, 18]. The data we used has 30
features in each feature vector and a single output component as target that codifies two classes:
benign and malignant (we set these to 0.1 and 0.9). We used a training file of 178 of these 200
vectors and a test file of 22 vectors. The respective results for RBFLNs, RBFNNs and MLPs are
presented in Tables 8, 9 and 10.

Table 8. RBFLN Results on the WBCD Data
__
_
 M No. Iterations TSSE Test Error � Training Misses Test Misses
220 200 0.7658 0.6631 0.0643 2 0
220 220� 0.6383 0.6789� 0.0587 0* 0*�
220 240 0.5473 0.6927 0.0549 0 0*

Table 9. RBFNN Results on the WBCD Data
__
__
 M No. Iterations TSSE Test Error � Training Misses Test Misses
220 300 (could not learn)
260 300 (could not learn)
300 300 (could not learn)

Table 10. MLP Results on the WBCD Data
__
_
 M No. Iterations TSSE Test Error Training Misses Test Misses
 20 1400 (could not learn)
 50 850 1.3773 0.0440 0 0
 50 900 1.3437 0.0407 0 0
 50 950� 1.2736 0.0265� 0 0�
 50 1000 1.1704 0.0450 0 0

22

4. DataXplore Software Description

The software developed for user friendly running of these two algorithms was done in
Visual C++ and is called DataXplore. Mr. Han Yu programmed the interfacing so that the user
can select either the fuzzy clustering algorithm or the radial basis functional link network by
clicking on the appropriate button in the main window. After selecting one of these, the user can
click to select a file from a menu of directories and files. The parameters are set for automatic
operation, but are shown in text boxes and may be changed by the user. In each case, when the
user is ready to run the selected algorithm on the selected data, one clicks on the “Run” button.

The DataXplore system includes two major software modules, which respectively
implement: i) a fuzzy clustering algorithm for unsupervised (self-organizing) classification of
data; and ii) a neural network algorithm (the RBFLN) for training on known data so that it can
then classify unknown data. The GIS package ARCView used by the Geological Survey of
Canada can call external programs and DLLs and so can call the DataXplore program to perform
data analysis on data in the format specified by the GS of Canada.

4.1. Starting and Stopping DataXplore. The user can start DataXplore by either of two
methods. First, from Windows Explorer, double-click DataXplore.exe. Second, select Run from
the Windows Start menu, then type in the full path to the “DataXplore.exe” file or use Browse to
find the location of the DataXplore.exe file, click on it and then click OK. Then select “Open”
from the popup menu. The Main Work Interface will appear to prompt the user as shown in Fig.
12 below.

 Fig. 12. The Main Work Interface menu.

23

Fig. 12 shows that DataXplore includes two major modules shown on the left and right of
the Main Work Interface: i) RBFLN for radial basis functional link net supervised learning of data
(on the left); and ii) the FUZZY unsupervised learning process (on the right). The details of each
function are discussed in the following sections. The user can click on the Quit button in the
center of the menu to exit the system.

4.2 The RBFLN (Supervised) Function. In Fig. 12, the RBFLN module includes three functions
designated by the buttons with captions Train, Test and Classify. Train uses known data that
includes both input vectors and target (labeled) vectors to train the RBFLN neural network so that
it can perform automatic classification operation on unknown (unlabeled) vectors after training.
Test is used after a partial or full training segment on the RBFLN network that yields a set of near
optimal weights. It is used to classify a set of known (labeled) vectors to determine whether or
not the training is good. These vectors have not been used in any training operations and are
novel to the network and so provide a test. The Classify procedure uses the trained (and tested)
weight parameters in the RBFLN in the on-line operational mode to process unknown data files
of (unlabeled) vectors for the purpose of classifying them. After training and satisfactory testing,
the RBFLN and its learned weights are called by the GIS to operate on other data sets of vectors
with the feature values from the same population of objects as used in the training and testing to
classify them into the appropriate classes that indicate the presence or absence of a desired
mineral (or other uses).

 Fig, 13. Selecting a data file for RBFLN training.

To train, the user clicks on the Train button of the RBFLN module (left side of the Main
Work Interface menu of Fig. 12) to bring up the OpenFile dialog box of Fig. 13 below that
prompts the user to select the data file to be used in the training stage (the default file name suffix

24

is dta for vector data sets). The user can browse and select the desired data file to use for training
by clicking Open on the bottom right. A click on the Cancel button returns to the Main Work
Interface.

A click on Open above brings up the RBFLN Train Parameters dialog box as shown in
Fig. 14 to prompt the user for the content of the current initialization parameter set for the
RBFLN training procedure and also to enable the user to make custom modifications. The upper
part of this dialog box (Fig. 14) shows the file name in the Training Data text area and also
shows four other parameters used to define the scale of the current RBFLN network. These are:
No. of Input Dimension, No. of Unique Conditions, No. of Hidden Layers and No. of Outputs.

 Fig. 14. The RBFLN Train Parameters dialog box.

The lower part of this dialog box permits the user to custom modify any initialization
parameters, including the learning rates (eta1, eta2, eta3 and biases), initial iteration number
and initial sigma values. The default values given are reasonable for essentially all cases and
should usually be accepted. A user can also select which method in the Centers and Weights Init.
Section toward the bottom will be used: Initialize randomly to 0~1 or Input from the center file
(the center file has a suffix of .par to denote that it is a file of parameters (weights and centers of
the RBFs) learned from the previous training. The default configuration is the first (left) radio
button selection and is used for initial training.

Using this dialog box, the user can define parameters once, then use them repeatedly for

25

later training, i.e., the user can make the training accumulative by the following operation: before
the next segment of training, select Input from the center file and then locate the parameter .par
file of the last training segment for the same training data file. During this procedure, the user
can modify any other desired parameters to make the individual training stage more efficient.

In the RBFLN Train Parameters dialog box of Fig. 14, users can make parameter
modifications based on previously completed training to start training again, or select “Return to
Main Menu” to accept the current parameter file as optimal parameters for the RBFLN network
so that it can be used for later “Test” and “Classify” stages.

After pressing Start Train, the RBLFN Training function starts. The RBFLN Train Status
dialog box will pop up as shown in Fig. 15 below. Three areas are used to show the training
status: i) Status Description, which gives textual information about which step of RBFLN
Training is under processing; ii) Current Iteration; and iii) Current SSE, which is used to show
the output’s variance from the set of targets (the sum squared error of Equation (7)).

 Fig. 15. The RBFLN Train Status dialog box.

After the training procedure finishes, the RBFLN Train Result dialog box of Fig. 16
comes up, which shows the RBFLN network general parameters, SSE for evaluating the results as
the training proceeds, and Vector No. / Target / Actual Output / Input for each input feature
vector. The user can print all mirrored content of the dialog box to a txt- format file. When the
user decides that the result is optimal enough for use in classification of novel input feature
vectors, one can save the parameter set to a parameter result file (with suffix .par) and return to
RBFLN Train Parameters dialog for further training. The two buttons at the bottom of the dialog
box allow these capabilities.

26

 Fig. 16. The RBFLN Train Result dialog box.
4.3 RBFLN Test. Upon pressing the Test button in the RBFLN part of the Main Work Interface
of Fig. 12, the user will get the same data file selection dialog box as in the RBFLN Train stage
for selecting a data file to be used in the RBFLN Test stage (the default file suffix is also .dta).
One can browse and select the training data file desired to use in the test and then select from
another dialog box that comes up the appropriate parameters file used for the network being
tested (the default suffix for parameter files is .par) as shown in Fig. 17 below. Here we see the
iris.par parameter file.

 Fig. 17. Selecting a .par parameter file for RBFLN Test.

27

After the test procedure finishes, the RBFLN Test Result dialog box pops up to show the
RBFLN network general parameters, the SSE of Equation (7) for evaluating the testing, and
information as shown in Fig. 18. The user can print all mirrored content to a. .txt format file via
the Print ListBox Content to temporary file button or return directly to the Main Work Interface
via the Return button. These buttons are on the bottom of the dialog box of Fig. 18..

 Fig. 18. RBFLN Test Result dialog box.

4.4 RBFLN Classification. When the user presses the Classify button of the RBFLN module in
Figure 12, the same data file selection dialog box as we saw in the RBFLN Train function comes
up (see Figure 13). One selects the data file to be used in the RBFLN Classification stage (the
default file suffix is also .dta). The user can browse and select the desired data file. Then another
dialog box comes up that is the same as the parameter file selection dialog box shown in the
RBFLN Test function above. The purpose of this dialog box is for the user to select a parameter
file to be used in the RBFLN Classification stage (the default file suffix is also .par). The user
can browse and select the desired parameter file.

The classification procedure then begins. After it finishes, an RBFLN Classify Result
dialog box as shown in Fig. 19 below prompts the user and shows the RBFLN network general
parameters, SSE, Total Targets No., Valid Target No., the Capacity, feature vector and target
vector, and Vector No./Classified Class No./Target Output/Actual Output. The user can print all
mirrored content in the dialog box to a .txt format file or save the classification results to a special
RBFLN classification results file (with default suffix as .rbn). The user can return to the Main
Work Interface by clicking the Return button.

28

Fig. 19. The RBFLN Classify Result dialog box.

4.5 The Fuzzy (Unsupervised) Module. As shown in Fig. 12, the FUZZY (Unsupervised)
module includes the two functions Train and Classify. Train uses unknown data (the data file
may be the same as that used for the RBFLN training and may include target (labeled) outputs,
but the targets are ignored). The fuzzy clustering finds the prototypes, or centers for K clusters.
After gaining the optimal parameter set of these centers (saved as a .cen file), other unknown
data files can be passed to the fuzzy clustering procedure based on this optimal parameter set.
However, the fuzzy clustering procedure is a complete and independent self-organizing,
unsupervised, learning algorithm and works very well on any set of unknown vectors by setting
its own parameters. Thus it does not need any parameter files.

4.6 Fuzzy Training. Here one presses the Train button of the FUZZY module in Fig. 12 to get an
OpenFile dialog box for the purpose of selecting a data file to be used in the Fuzzy Train stage
(the default file suffix is .dta and the same files may be used as were used for the RBFLN
training). Here we see the iris.dta file in Fig. 20 below.

The Fuzzy Train Parameters dialog box of Fig. 21 prompts the user by showing the
content of current initialization parameter set for the FUZZY training procedure and it also
enables the user to make custom modifications. The parameters include Training Data File
Name, No. Data Categories K, Closeness and Iterations (the number of iterations desired). The
default parameters are reasonable for essentially all cases. Also the training procedure is
accumulative.

29

 Fig. 20. Selecting a data file to be used in Fuzzy Train.

 Fig. 21. The Fuzzy Cluster Parameters dialog box.

After clicking the Start Clustering button, the fuzzy clustering procedure starts. The Fuzzy
Train Processing Information dialog box then prompts the user as shown in Fig. 22, which also
presents the user with information as to which step of the fuzzy clustering algorithm is in process.

30

 Fig. 22. Fuzzy Train Processing Information dialog box.

After the training procedure finishes, a Fuzzy Train Result dialog box comes up as in Fig.
23. It shows the No. of Classes, each center vector, the details of each class (including Vectors
No., WFV for the current class, and the indices for all vectors contained in each class), as well as
the important clustering validity value (the larger it is, the better is the clustering) the reciprocal
Xie-Bene measure.

 Fig. 23. The Fuzzy Train Result dialog box.

The user can now press the Merge button to further merge clusters that are close to each
other. When the user is satisfied with the result, one can print all mirrored content of the dialog
box to a .txt format file, or click the Finish button to save the current parameter set to a parameter
file (the default suffix is .cen) for later classification use. Fig.24 shows the iris.cen parameter file
as an example. Finally the user returns to the Main Work Interface to quit or do further
processing. In the usual case, the training is the classification for fuzzy clustering, so any
unknown data can be used to classify it merely by putting it through the fuzzy training as given
above. Nothing further is required.

31

 Fig. 24. Saving the Fuzzy Train Result parameter file.

4.7 Fuzzy Classification. In the process shown here, a trained fuzzy classifier is used to classify
data other than that data which was trained on. This is not the usual or recommended process, but
can be used in special cases. The user presses the Classify button in the FUZZY module in Fig. 12
(Main Work Interface) to get the same data file selection dialog box as in the Fuzzy Train
function (the default file suffix is also .dta). The user can browse and select the desired data file
for classification. The example we use is the iris.dta file. Another dialog box for selecting the
parameter file saved from previous fuzzy clustering appears and prompts the user as shown in
Fig. 25. Here one can browse and select the parameter file (default file affix is .cen) desired. We
show the iris.cen as example that contains the centers from previous training.

 Fig. 25. Selecting a parameter file for further fuzzy classification.

32

After the classification procedure finishes, a Fuzzy Classify Result dialog box prompts the
user as shown in Fig. 26. It also shows No. of Classes, each class center vector, details of each
class (including Vector No., WFV for current class, and all vectors index contained in this class).
It also shows the clustering validity (higher values are better). Clicking Finish returns to Main
Work Interface.

The user can print all mirrored content in the dialog box to a .txt format file, or save the
classification result to special Fuzzy Classify Result file (with default suffix .fuz). Fig. 27 shows
the file iris.fuz as an example.

 Fig. 26. The Fuzzy Classify Result dialog box.

 Fig. 27. Saving Fuzzy Classification Result data.

33

5. References

 [1] E. Anderson, “The iris of the Gaspe peninsula,” Bulletin American Iris Society, vol. 59, 2-5,
 1935.

 [2] M. Bianchini, E. Frasconi, and M. Gori, "Learning without local minima in radial basis function
 networks," IEEE Trans. on Neural Networks, vol. 6, no. 3 (1995) 749-756.

 [3] E. Forgy, “Cluster analysis of multivariate data: efficiency versus interpretability of
 classifications,” Biometrics 21, 768, 1965.

 [4] E. J. Hartman, J. D. Keeler, and J. M. Kowalski, Layered neural networks with Gaussian hidden
 units as universal approximators, Neural Computation, vol. 2, no. 2 (1990) 210-215.

 [5] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal
 approximators, Neural Networks, vol.2, no. 5 (1989) 359-366.

 [6] C. T. Lin and C. S. George Lee, Neural Fuzzy Systems, Prentice-Hall, Upper Saddle River, NJ,
 1995.

 [7] Carl Looney, Pattern Recognition Using Neural Networks, Oxford University Press, N.Y.,
 1997.

 [8] C. Looney, "Stabilization and speedup of convergence in training feedforward neural networks,"
 Neurocomputing 10 (1996a) 7 - 31.

 [9] C. Looney, "Demystifying feedforward neural networks as knowledge acquiring black boxes,"
 IEEE Trans. Knowledge and Data Engineering, vol. 8, no. 2 (1996b) 211 - 226.

[10] J. B. MacQueen, "Some methods for classification and analysis of multivariate observations,"
 Proc. 5th Berkeley Symp. on Probability and Statistics, University of California Press,
 Berkeley, 281-297, 1967.

[11] O. L. Mangasarian, W. N. Street and W. H. Wolberg, “Breast cancer diagnosis and prognosis
 via linear programming,” Operations Research vol. 43, no. 4 (1995) 570-577.

[12] N. R. Pal and J. C. Bezdek, “On cluster validity for the c-means model,” IEEE Trans. on Fuzzy
 Systems, vol. 3, no. 3, 1995.

[13]Y. H. Pao, G. H. Park, and D. J. Sobajic, Learning and generalization characteristics of the
 random vector functional link net, Neurocomputing 6 (1994) 163 - 180.

34

[14] J. Park and I. W. Sandberg, "Universal approximation using radial-basis-function networks,"
 Neural Computation, vol. 3 (1991) 246-257.

[15] M. Schneider and M. Craig, "On the use of fuzzy sets in histogram equalization," Fuzzy Sets
 Syst., vol. 45, 271-278, 1992.

[16] S. Z. Selim and M. A. Ismail, “K-means type algorithms: a generalized convergence theorem
 and characterization of local optimality,” IEEE Trans. Pattern Analysis and Machine
Intelligence, 6, 81-87, 1984.

[17] W. H. Wolberg and O. L. Mangasarian, “Multisurface method of pattern separation for medical
 diagnosis applied to breast cytology,” Proc. of the Nat. Academy of Sciences, U.S.A., Volume
 87, 9193-9196, December, 1990.

[18] W. H. Wolberg, W. N. Street, D. M. Heisey and O. L. Mangasarian, “Computer derived nuclear
 features distinguish malignant from benign breast cytology,” Human Pathology 26 (1995) 792-
 796.

[19] X. L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IEEE Trans. Pattern Analysis
 and Machine Intelligence, vol. 13, no. 8, 841-847, 1991.

	Executive Summary.
	1. Introduction
	2. The Fuzzy Clustering Algorithm
	2.1 Classification and Clusters
	2.2 Clustering Validity
	2.3 The New Fuzzy Clustering Algorithm
	2.4 Fuzzy Merging of Clusters
	2.5 Computer Test Results

	3. The Radial Basis Functional Net Algorithm
	3.1 Radial Basis Functions
	3.2 Radial Basis Functional Link Nets
	3.3 The Full Training Algorithm for RBFLNs
	3.4 Comparative Training Runs on Noisy Data

	4. DataXplore Software Description
	4.1 Staring and Stopping DataXplore
	4.2 The RBFLN (Supervised Function
	4.3 RBFLN Test
	4.4 RBFLN Classification
	4.5 The Fuzzy (Unsupervised) Module
	4.6 Fuzzy Training
	4.7 Fuzzy Classification

	5. References

